The Instant Assembler

Assembly Language Development System
For the TRS-80

Written by John Blattner

Mumford Micro Systems
PO. Box 400, Summerland, California 93067
(805) 969-4557

IABLE OF CONTENTS

Directory of the Diskette ...ccceceveccvesccsccccesccccscccscecscsvocne
Introduction .0..5‘..0...0Dl..l...l.0l.'.......'....0....0.0....0..0!
Preview of Instant ASSembler .c.ccccccceeccccccceccossasccnanccsnes
'“ F‘.tu"a Or version 2.1 X E R EENERENX NN NN N NI NN NN N RN NNNNNN N NN NN NN]
uh‘t .n "“-bler D“a ® 0000000 000 0000000000080 000000000000000000000

P‘rt I. rh' ‘mnbler 0000000 000000000000 00600060000000000000000000000 0
S.otion 'o ‘mnblel' Cmnds 0000 000000000000000000006000000000000
1.'. c“pa‘ns ‘nd Editim 90000 0006000000000 000080080000000600000 6
CP, ED and Entering Line Numbers, CC
1.2, Inael'ting, Delotins’ and “ov‘n! A K |
1S, DL, DM, MB
’03_0 Listing P £ |
LC, PC, LL, PL, PR, LI, PI, LE, RE, LS, PS
1.“. T‘” Input,output‘.......‘................11
WS, VS, RS, WO, WE, RE
1.5. Disk Input/outp“t e0essscaccccsscsssssscsccscsccccccscecscsseld
0s, IN, MG, 00, OE, 1E
1.6. Miscellaneous cecccecacssccecsccsssscccsssonsossacavsccssccsell
AM, RO, FR, DI, KL, EX, MD
Section 2. Example of the Assembler in Action cccccoccccecccceceeed3
Section 3. Inside Instant Assembler - 4
Part 1II. The Debugger tecscsccscscsscccsscscccsesssnccscssccasssccsccccell
s.ction “. m°r°mm cmands'......'......................30
hedo St.epping, B"akp°1ntin8. and Executing g {1
Sp, XC, BD, RN, BK, RB, SB, JP, CL
4.2, 8egiater and Memory Display eeecccccsssscsaccsesssscesasnce3l
RG, MM, AS, P1, P2
3.3. Utilities .000.000.0nloooo.o‘.oooo..ooooto..-0..00......0.36
FN, DS, HD, DH
4.4, Symbolic Disassembly and TranSfer cccceccccccossceccccsecccs3l
SD, AD, 1A
“.5. Ta” and Printer comnda .'........‘.....................38
TP, VF, DP
Section 5. Example of MicroMind in Action ccccvccocccccscccoccceaclid
s'ction 6. Inaid. meromnd ..-....'............................l.uz
Part III' The Limins Loaders 0.0.00.0000l.OI00.0000..00000'.0..00.‘0"“
Section 7. Linking Loader Commands ..ccceoccccoscccsscnsscssonscesslili
Lp, cL, SY, pPM, 00, TP, VF, JP
Section 8. Example of Linking Loader in Action cccececccccacccoseslid

OO EwwwnN

Appendix 1. Legal Instructions for Instant Assembler 2.1 coccccsceses5l
A’p‘ndix 2. smal‘y of Assembler Commands ..ccccceccsccnssasscscscsses2
Ap”ndix 3. source code EntryO.l........'.............l.....53
Appeudix 4, Editin‘ Procedures ..ccccecececsccscsesccscccscssccscessesdll
Appendix 5. Ent.rin‘ Line Numbers and Addresses ccccccvecccccccescsecedS
Appendix 6. Parameter Locations and Meanings .ceecceccscccacsavsccsces5b
Appendix 7. Summary of MicroMind and Linking Loader Commands .c...c..«57
Appendix 8. Adaptina to EDT“M ..I".l.......C........Q.........'.."68

Index O.IQI.C....C...‘...........C......'0.....‘l...l........0..'.0'.63

Page 1

DIRECTORY OF THE DISKETIE

Your Instant Assembler diskette contains six command files, whose names and
functions are:

DSKIAS/CMD =~ Disk Instant Assembler and debugger package.
DSKLLBY8/CMD -~ Bottom-Up Linking Loader for usera with §8K RAM.
DSKLLB32/CMD -- Bottom-Up Linking Loader for users with only 32K RAM.
DSKLLT/CMD -~ Top-Down Linking Loader.

MICROM/CMD - Relocatable, stand-alone version of the single stepping
debugger, including a printing disassembler.

IASTRF/CMD == A three-byte program with the sole purpose of providing a
nondestructive reentry to Instant Assembler.

The disk is formatted for the current version of TRSDOS for your machine,
If you have two drives, you may put this disk in drive 1 and your TRSDOS
compatible operating system in drive 0. To load and execute one of these
prograns, simply type the name as given above and hit ENTER.

If you have only one drive, you will need to use a different procedure. The
Instant Assembler disk has a special structure that will allow you to copy the
prograns on it to a TRSDOS system disk of your own., To do this, use the
following step-by-step procedure:

1) Put a current TRSDOS system disk in drive 0 and hit RESET.

2) When the DOS READY prompt is displayed, remove the TRSDOS disk, insert the
Instant Assembler disk, and hit RESET again.

3) The disk should ®"boot up™ with our sign on message. This message will tell
you which version of TRSDOS it is designed to work with, If the system disk
you are using is not the same type, put the correct system disk in drive O
and go back to step 1.

4) The first program name will also be displayed and you will be asked to put
your system disk back in drive O.

5) Put y:::ksyaten disk in drive 0 and enter W to write the program onto your
own .

6) You will then be instructed to put the Instant Assembler disk back in drive
0 to copy the next program. Repeat this sequence until all programs have
been copied onto your system disk.

Page 2

ANTRODUCTION

Preview of Instant Assembler

Disk Instant Assembler is a powerful, disk-based asssembly system for the
TRS-80 Model I or Model III. Its unique design has the object of increasing
your productivity as a Z-80 assembly language programmer. Among its dozens of
convenient features, the following stand out:

(1) Immediate assembly, and immediate detection of most potential errors, as
the lines of symbolic assembly language code are entered.

(2) A compactly encoded source format that provides a 2-1/2 to 1 storage
advantage (both in memory ard on disk) over the standard source code format.
For example, all the source code for all the modules in the Instant Assembler
package fits on one 35-track, single density disk; the same source code in
standard (EDTASH) format would require three such disks.

(3) Production of independently written, relocatable code modules that can
be linked by the Linking Loaders (included in the package).

(4) In-memory assembly and immediate debugging with the built-in debugger,
featuring single-stepping with full register displays.

Much thought and hard work have been invested in this new version of the
highly acclaimed Instant Assembler to make it especially easy to use -- once
you have learned how. Yet, the program is so packqd with fleatures that it will
take some time to learn to exploit all its strengths, You will find the
learning easier if you have had previous experience with an assembler such as
EDTASM (the TRS-80 Editor/Assemdbler). In any case, it is assumed that you have
(or will obtain) a table of the 2-80 mnemonic instructions, together with a
description of their functions -~ information such as that provided in the
EDTASM nmanual, Appendix 1 contains a cryptic (but complete) list of the 2-80
instructions, including the undocumented instructions -~ all of which are
recognized by Instant Assembler 2.1.

New Features of Version 2.1

Disk Instant Assembler 2.1 is an upgrade of Disk Instant Assembler 1.1 and
will accept the source code produced by that earlier version, as well as the
source code produced by all versions of the Tape Instant Assembler. Earlier
versions of Instant Assembler may not be able to read the source code produced
by the 2.1 version, if that source code employs any of the new formatting
features of Instant Assembler 2.1.

The two most significant additions in Instant Assembler 2.1 are on-line
comments (now allowed) and full editing of source lines. Other noteworthy new
features include:

(1) True listing of decimal and negative operands.

(2) Character constants.

(3) Separate listing of internal source code errors.

(4) Output of EDTASM source to disk.

(5) Conversion of EDTASM source to Instant Assembler format.

(6) Merging of Instant Assembler source modules,

(7) Assembly and disassembly of undocumented 2-80 instructions.

(8) Disassembly and step-wise debugging that can reference the
assembler's symbol table.

Page 3

If you are familiar with an earlier version of Instant Assembler, you will
discover many more new features as you read this manual. Indeed, one of the
added features is the manual's appendices, which present in summary or tabular
form the most essential information for the successful operation of your
Instant Assembler,

What an Assembler Does
The basic task of an assembler is quite aimple: to translate symbolic
machine code (that is, assembly language) into numeric machine code (hex code).
For example, a frequently encountered 2-80 instruction is
LD A,B

which has the effect of transferring the contents of the B register to the A
register. When assembled (and loaded into memory), this instruction will reside
in a single byte somewhere in memory as the pattern of bits

0111 1000

or 78H. The assembler's role is to translate the symbolic LD A,B into the
numeric 784H. The usefulness of this function is due to the fact that it is not
at all difficult for a programmer to learn and remember the exact meanings of
several hundred instructions such as LD A,B, but it would be exceedingly
tiresome to try to msemorize a like number of purely numeric codes.

Many 2-80 instructions refer to memory locations, and some of these
locations are likely to change as a program evolves. As an example, suppose
that you have written a subroutine that clears a certain buffer, and that in an
early assembly of your program this subroutine's entry point is 8000H. Then,
the instruction

CALL B8000H

would clear the buffer. But, a later assembly of the (revised) program may
place this subroutine at 8056H, in which case all the CALL B8000H instructions
would have to be rewritten.

The solution to the problem of changeable addresses is to give these
addresses symbolic names that the assembler (or linking loader) can translate
to correct numeric values. In the above example you would give the instruction
at the entry point of the subroutine a label -- CLRBUF, let's say. Then, the
instruction

CALL CLRBUF

would clear the buffer, and you wouldn't have to concern yourself about the
actual numeric value of CLRBUF.

The use of labels (and symbols to reference the labels) can be extended to
the case in which you know perfectly well what the numeric equivalent of a
label is, but you want the instruction to be self-documenting. For example,

CALL 1C9H

will clear the video screen of any Model I or III, because there is a ROM
subroutine for this purpose whose entry point is 1C9H. But, it might be easier
to divine the purpose of the instruction if it were

CALL CLRSCR

Page X

So, we want to EQUate CLRSCR to 1C9H. 2-80 assemblers furnish a "pseudo-op" for
this purpose: EQU. The pseudo-instruction we want is thus
CLRSCR EQU 1C9H

Besides the EQU, 2-80 assemblers provide four other useful pseudo-ops:
DEFB, DEFW, DEFM, DEFS. DEFB is used to assemble a one~byte constant into a
program; examples are:

TWO DEFB 2 ;Note the' label
DEFB *'X' ;A character constant

DEFW 18 used similarly to assemble a two-byte constant (but not two character
bytes). DEFM is for assembling a atring of ASCII characters, as in
MESSAG DEFM 'Do not touch the break key.'

(Note that apostrophes are required to start and end the string.) Finally, DEFS
reserves a block of storage for use by the program; for example
BUFFER DEFS 256

will reserve 256 bytes, the first of which will be at (aymbolic) memory
location BUFFER.

The above describes the fundamental duties of. your Instant Assembler. All

other features are frills designed to save you time in the creation of perfect
programs.

Page 5

PART 1. THE ASSEMBLER

The assembler proper is the principal component of the assembler-debugger
package that is loaded under the name DSKIAS/CMD. Learning to use the assembler
requires first an understanding of its command structure. There are 37
two-letter commands, which will be fully explained in Section 1 below; they
have been divided into six subsets for clarity. (These commands are also
summarized in Appendix 2.)

SECTION 1. ASSEMBLER COMMANDS

When you load and run Disk Instant Assembler, you see a "?® (and a blinking
cursor) displayed at the left side of the screen just below the program title
line. This is the prompt for entering an assembler command. The universal rule
for the entry of any command (in the assembler, debugger, or linking loaders)
is that the entry is completed with the typing of the second letter; the ENTER
key does not have to be pressed to enter the command. If you type an
unrecognizable command, Instant Assembler will ask for the command again with
another prompt.

l1.1. Composing and Editing

At the heart of any assembler are the routines that make possible the
entering and editing of source (symbolic assembly language) code. If you have
not programmed in assembly language before, you are in for a pleasant surprise
-- typing 2-80 source code (especially with Instant Assembler) is far easier
than typing BASIC code. And, if you have found the editing of lines of BASIC a
slow and frustrating task, you should be delighted with the editing facilities
of Instant Assembler 2.1.

CP (ComPose)

Enter "CP*®" in response to the "?% prompt to commence the composition of an
assembly language program. If the source buffer is not empty, Instant Assembler
will respond "CODE ERASURE. PROCEED (Y/N)?* Either type "Y" to erase the buffer
and to proceed with composing, or else press "N" (or almost any other key) to
abort the CP command. (Instant Assembler has several protective features such
as this one; they have been tailored to be as unobtrusive as possible.)

If the source buffer is empty (as 4t will be when you first load the
program), and you enter the CP command, you will be given a blank line number 1
on which to start your program. You will also notice a vertical dbar followed by
the letter X in the lower right corner of the screen. The reason for this
display is to remind you that you are in the "X® mode, which is the normal mode
for entering source code. It is possible to leave the X mode for the purpose of
editing the line that you are entering; how to do this will be explained along
with the ED (EDit) command a bit later. Now here are the rules for entering
source code; it is recommendcd that you learn them through practice rather than
by memorization.

Page 6

(1) A composition line normally has three fields: label, opcode, operand.
Use the RIGHT ARROW key to tab to the next field; you cannot tab farther than
the operand field. Use the LEFT ARROW key to backspace and erase the previous
character, including backspacing to the previous field if necessary. Each field
is restricted with respect to the number and type of characters that it will
accept:

The label field accepts only a letter or the ampersand (&) as its
first character, only letters or digits for its subsequent
characters, with a maximum of six characters.

The opcode field accepts only letters, with a maximum of four
characters.

The operand field accepts anything (including spaces), with a
maximum of 45 characters.

It is not possible to enter more characters in a field than the field
limits just given. The ampersand as the first character of the label field is
used to designate an external label -- one whose value can be made available to
other modules by the Linking Loader.

(The information of the above paragraphs is presented in more graphic form
in Appendix 3.)

(2) An on-line comment (that is, a comment that appears on the same line as
an instruction) is entered in the operand field, following the operand (or
operands), and preceded by a semicolon (;). One on more spaces may precede the
semicolon, but they are not required. Examples of correctly entered on-line
comments are:

EXITt CALL 60H ;Time delay
JP 402DH sReturn to DOS
With the Model 1II, comments may be entered in lower case; use the lower case
(SHIFT-0) toggle, but be sure to restore the upper case mode when the comment
is completed. Don't worry about alignment of comments when entering source
lines -~ they will be aligned automatically in listings.

(3) No on-line comment is allowed with a DEFM pseudo-instruction. This is
not a severe restriction, since the DEFM is usually self-documenting.

(4) By entering a semicolon as the first character of a line, you override
the three-field format given in (1) and convert the entire line to a comment
line, with a maximum of 59 characters (including the semicolon). (This initial
semicolon cannot subsequently be erased with the LEFT ARROW key; if erasure is
necessary, use SHIFT-LEFT ARROW.)

(5) Instant Assembler does not recognize the ORG, END, or DEFL pseudo-ops.
ORG and END are supplied automatically when a program is listed or recorded.
(You may use the RO command, explained in subsection 1.6, to set or change the
origin.)

(6) Symbols follow the rules for labels -- six characters maximum, first
character either a letter or ampersand, subsequent characters either letters or
digits, Symbols may be postfixed with decimal offsets in the range of -31 to
«287, inclusive. (An offset gives the number of bytes of displacement, just as
in EDTASM.) Any other combinations involving symbols are not legal; thus, LD
HL,HOLD+42 is allowed, but LD HL,HOLD-42 and LD HL,HOLD2-HOLD1 are not. A
symbol may represent an address or a 16-bit constant, but may not be used for
an 8-bit constant; thus, JR THERE is valid, but LD A,SPACE 4is not.

Page 7

(7) Numeric constants may be entered in either decimal or hexadecimal --
though the first character must be a digit -~ and may be prefixed with a minus
sign. Hex constants and addresses must also bear the postfix ®"H", Legal entries
include:

LD A,OCFH LD HL,23586
LD B,-5 LD DE,-9

INC (IX-OBH) LD BC,0ASASH
ADD A, (IY+20) CALL 33AH

Note particularly that the increment (or decrement) to an index register may be
in either decimal or hex and must lie in the range of -128 (-80H) to +127
(+7FH), inclusive,

(8) Character constants may be used for 8-bit operands. A character
constant must be preceded and followed by an apostrophe (single quote mark).
Examples:

LD A X
cp ';'

(9) The pseudo-ops DEFB, DEFW, DEFM, and DEFS may be entered economically
by using SHIFT-1 (1), SHIFT-2 (®), SHIFT-3 (#), and SHIFT-4 (§), respectively.
This may be done either from the label field or in the first character position
of the opcode field. For example, SHIFT-1 from the label field is equivalent to
typing the sequence TAB (that is, RIGHT ARROW), *DEFB®, TAB, and places you
immediately in the operand field for entering the value of the byte. This
feature is provided for convenience in assembling tables, messages, and storage
areas,

(10) The operand for a DEFS pseudo-op is restricted to the range 1 to 4095
(decimal), inclusive. To reserve more than 4095 bytes of storage, use multiple
DEFS's. DEFS 0 is illegal.

(11) Because of the 45 character limit in the operand field, a DEFM
pseudo-op cannot define a string of more than 43 characters, since an
apostrophe (single quote) is required both to begin and to end the string. To
define a longer string, use multiple DEFM's. With the Model III, you may enter
lower case characters in a DEFM string; Jjust be sure to return to the upper
case mode when the entry has been completed.

(12) The operand for an EQU pseudo-op must be an absolute address. As
examples, HERE EQU 823BH is legal, but HERE EQU THERE+1 is not. Note
also that an EQU must have a label.

(13) All relative jumps (JR, JR N2, JR Z, JR NC, JR C, DJNZ) must refer
to symbolic target addresses. Examples of legal relative jump instructions are:

DJNZ LOOP
JR NZ,DELAY-3

Any relative jump to an absolute address will be rejected; also, Instant
Assembler does not recognize "$" as a reference to the memory location of the
present instruction. Hence, the following are illegal:

JR 502uH
JR C,$-12

Page 8

(14) If you make a real mess in entering a line and would like to have a
fresh start, type SHIFT-LEFT ARROW. You will then get a blank line with the
same line number.

(15) When a line of source code is complete, enter it by pressing ENTER.
Instant Assembler will immediately assemble it (except for a possible reference
to an as-yet-undefined label). If there is no detectable error, the instruction
is accepted and you are presented with the next line number in sequence for
continuation. To end composition, press the BREAK key.

(16) If any error is detected in an entered line of source code, Instant
Assembler will announce it with a message. Possible error messages at thic
stage are:

MISSING LABEL

ILLEGAL LABEL «- (Label is a 2-80 operand, such as "HL®,)

DBLY DFND LABEL -~ (Label has been used befaore.)

MISSING OPCODE

ILLEGAL OPCODE ~~ (Mot a 2-80 opcode.)

MISSING OPERAND

ILLEGAL OPERAND -- (Mot a 2-80 operand.)

BAD OPERAND -~ (Many possible reasons, including field overflow,
incorrect punctuation, and improper mixing of operands.)
(Backward relative jump is tqo long.)

OUT OF RNG -

Following display of the message, Instant Assembler switches to change (edit)
mode for correction of the line and positions the blinking cursor in the
offending field. How to make the correction will be explained under the ED
command, which comes next.

ED (EDit)

The ED command allows you to inspect and change as many consecutive lines
of source code as you please in one continuous operation; insertions and
deletions of lines may also be freely intermixed with the changes. To
understand the workings of this command, it is helpful to identify three
separate levels at which activities take place. For want of better names, let
us call these levels the "line"™ level, the "cursor™ level, and the "edit"
level., At the line level, a line of source code is displayed for your
inspection, but there is no cursor; Instant Assembler awaits your instructions
for the disposition of this line. If you choose to descend to the cursor level,
a nondestructive blinking cursor appears that can be freely moved about withaut
changing any characters in the field; most ordinary characters typed in at this
level are simply ignored. Finally, you can descend to the edit level, where
characters that you type are entered into the source line. Of course, it is
possible to move upward in the level hierarcy, too.

After you have entered the command ®ED" in response to the *?" prompt, you
will be asked for a "FIRST LINE#?". Type the number of the first line that you
wish to edit (or inspect), and presr ENTER. This line of source code will then
be displayed. You are now 2t the line level, and you have several options for
the disposition of the displayed line:

Page 9

UP ARROW == Press this key to back up one line. The previous line is
displayed, and you remain at the line level.

DOWN ARROW ~- Press this key to advance one line. The next line is
displayed, and you remain at the line level.

ENTER -~ Same as DOWN ARROW,

D == Press the D key to Delete the displayed line. The next line
is then displayed (with the same line number as the deleted
line), and you remain at the line level.

I -~ Press the I key to Insert a line just before the displayed
line., Descent is to the edit level (and the *X" mode) for
entering the new line.

c -~ Press the C key to Change (edit) the displayed line. Descent
is to the cursor level.
BREAK- -« Exit to Instant Assembler command level.

To clarify the action of the I key at line level, suppose that the
displayed line is line number 237. When you press the I key, you will be given
blank line number 237 on which to compose the line to be inserted. After this
line has been typed and entered (exactly as described under the CP command),
the orignal line number 237 will dbe displayed again with its line number
changed to 238. (And all following lines will have their line numbers increased
by 1 because of the insertion.) You will be back at the line level, and you
can, if you wish, use the I key again and again to insert any number of lines
ahead of the original line 237.

If you want to edit the displayed line, use the ®"C" key to descend to the
cursor level. At this level you have available several cursor motion commands:

SPACE -= Move cursor one space to the right without erasing the
character.

LEFT ARROW =~ Move cursor one space to the left without erasing the
character; move to previous field if cursor is at left end
of present field.

RIGHT ARROW == Tab to the next field.

n SPACE -= Move cursor n spaces to the right without erasing.

n LEFT ARROW -- Move cursor n spaces to the left without erasing.

In the above, n represents a one- or two~-digit number that you have typed
before the SPACE or LEFT ARROW; if you type more than two digits, only the last
two will be used. Also, the movement will not go beyond either end of the
present field (except when n LEFT ARROW is used at the left end of a field).
Once you have positioned the cursor where you want it, you may descend to edit
level in any one of the following ways:

SHIFT-D =~ Delete the character at the cursor, and return to cursor level.

n SIIIFT-D -- Delete n characters starting with the one at the cursor, but
not extending beyond the present field. Return to cursor
level,

SHIFT-1 -~ Insert characters in front of the character at the cursor.

SHIFT-C -~ Change (retype) characters starting at the cursor.

SHIFT-H -~ llack and enter; that is, delete characters from the cursor to
the end of the field, and then go into entry mode.

SHIFT=X -= Move cursor to right end of present field and go into entry
mode.

Page 10

These editing modes (as well as the cursor motion commands) are¢ nearly
identical to the ones in the LEVEL II BASIC line editor, except for the extra
SHIFT required to initiate some of them. In the entry mode (after SHIFT-H or
SHIFT-X), the LEFT ARROW erases characters as it backspaces, and the SPACE (if
it is allowed in the field) also erpses characters. In the I and C modes,
however, the LEFT ARROW does not erase characters. The I, C, H, and X modes are
continuous; that is, you remain in these modes until you either tad or
backspace to another field, or until you cancel the modes with one of these
keys:

DOWN ARROW ~-= Cancel I, C, H, or X mode and return to cursor level.
SHIFT-UP ARROW -~ Same as DOWN ARROW.

As you use the various edit modes, the display at the bottom right corner
of the screen (a vertical bar followed by a blank or a character) will change
to reflect the mode that you are in. Digits ‘typed at the cursor level will also
appear in this window; the character M is used to signify any two-digit entry
larger than nine. If you are observant, you may notice a couple of apparent
anomalies that are, however, deliberate and correct: X mode turns into H mode
when you backspace, and Instant Assembler itself initiates the X (or H) mode
whenever you tadb (forward) to an empty field or backspace to a previous field.
A little thought will convince you that the X (or H) mode is usually the
desired one in these circumstances.

If you botch the editing of a line, you can type SHIFT-LEFT ARROW to get a
blank line with the same line number for reentering the code.

When a l1ine has been edited to your satisfaction, press the ENTER key. The
revised line will then be checked for errors; if one is found, it is reported,
and you are returned to cursor level with the cursor positioned in the
offending field. When the corrected line is finally accepted, Instant Assembler
returns to line level and displays the next line of source code, except that,
if ED is used all the way to the end of the source buffer, an automatic exit is
then made to the Instant Assembler command level.

When you descend from the line level to the cursor level by pressing the
®C® key, the displayed line is immediately deleted from the source buffer to
make way for the revised line. Since it would be untidy to leave this
unintended hole in the source code, Instant Assembler will not release you from
the ED command until you have entered an error-free version of the edited line.
For this reason, the BREAK key functions exactly like the ENTER key here,
rather than effecting a return to the command level,

Though the ED command has now been fully explained, we are not finished.
The same editing facilities are sometimes used in connection with the CP
command, but the details of initiation and termination are somewhat different.

When you enter source code (with the CP command), you are normally in the X
(or H) mode. (Thus, with the CP command, you enter the editing process at the
bottom, or edit, level.) If you decide that you would like to change part of
what you have entered, use the DOWN ARROW key to ascend to cursor mode,
position the cursor, and make the change. Return to where you were working with
the TAB (RIGHT ARROW) and/or SHIFT-X keys.

NOTE: The keyboard might seem to die if you inadvertently hit the DOWN
ARROW key while in X (or H) mode. If this happens, merely type SHIFT-X to
restore normal operation.

Page 11

A line of source code that you have composed with the CP command may have
an error that Instant Assembler detects. In this case, you are thrust into the
editing process at the cursor level, with the cursor positioned in the
offending field. (Review iten (16) under the CP command.) The editing
procedures are atill the same, of course. Note, however, that you can use the
BREAK key here to escape to the command level, since no line of source code has
been deleted by the editing procedures of CP mode.

(Editing procedures are summarized in Appendix 4,)

Entering Line Numbers

The ED command and several of the commands to be descridbed later require a
starting line number. (Some of the others also require an ending line number.)
Since Instant Assembler prompts for the information that it needs, you do not
have to remember any special syntax (such as "ED:122%, or "ED,122%). Also, for
your convenience in finding lines, Instant Assembler provides three different
ways in which line numbers can be entered:

(1) As decimal numbers. This direct method requires that you know your
targeted lines by number, The listing commands (Section 1.3) can de helpful in
finding these line numbers.

(2) As labels (with optional decimal offsets in the range of -31 to +99,
inclusive). For example, asking for the line "EXIT" would cause lnstant
Assembler to find the line of source code with the label ®EXIT®". Asking for
BEXIT+10* would direct Instant AssemlLler to the line whose line number ia 10
larger than that of the line with label "EXIT". Note that the offset here is
the number of lines of offset from the specified label. This feature of being
able to address a line by its label (or label plus offset) makes it easy to
find lines in a large program if you have a rough (hand-written) copy of the
source code, or a printed listing of an earlier version of the program.

(3) By means of the current line pointer. Instant Assembler maintains a
current line pointer that contains the line number of the last line to have
been displayed on the screen (or, in some cases, the line before that one).
When a line number is requested, you may use the *." (period) key to demand the
current line. If you press the UP ARROW (or the DOWN ARROW) key, you request
the line before (or the line after) the current line.

If you use method (1) or (2) above, and if you enter a line number that is
less than 1 or larger than that of the last line in the source buffer, Instant
Assembler will respond "BAD" and ask for the line number again. The same is
true if you enter a label (or label plus offset) that does not correspond to
any line of source code.

(This material on entering line numbers is summarized in Appendix 5.)

CC (Continue Composition)

After composition has been ended with the BREAK key, it may be continued by
entering the CC command. You will be given a line number ore larger than that
of the last 1ine of code in the source buffer to continue your program. CC may
also be used to add to a source program that has been read in from disk or
tape. An auxiliary use of the CC command is to find the line number of the last
source line; when the CC command is entered, the current line pointer is set to
the number of this last line.

Page 12

1.2. Insertine, Deleting, Moving

These commands all require a starting line number; two of them (DM and MB)
also require an ending line number, and MB requires yet a third line number.
Refer to the paragraphs on Entering Line Numbers in Section 1.1 (at the end of
the ED command).

IS (InSert)

When you use the IS command, Instant Assembler will ask for a "LINE#?". The
insertion will be immediately before the line whose number you specify. For
example, if you insert at LINE# 69, the inserted line will then have the line
number 69, while previous line 69 will become line 70, previous line T0 will
become line 71, etc. After you have composed the new line (exactly as with the
CP command), it is inserted, and Instant Assembler will give you the next line
number for continued insertion. You may insert as many instructions as you
please. Use the BREAK key to exit from IS mode.

DL (Delete Line)

Use DL to delete a single line. Instant Assembler will ask for the
SLINE#?". The deleted line will be displayed on the screen to confirm the
correctness of the deletion. The line numbers of all lines following the
deleted line will be decreased by 1.

DM (Delete Multiple lines)

Use DM to delete a block of lines., Instant Assembler will ask for the
®FIRST LINE#?® and the "FINAL LINE#?® of the block in two separate questions,
These may be independently entered as decimal numbers, or labels plus offsets,
or with the current line pointer facility. The first line of the deleted block
will be displayed on the screen as a partial confirmation of the correctness of
the deletion. Multiple deletion reduces the line numbers of all lines following
the deleted block.

MB (Move Block)

Use MB to move a block of source code from one position to another. Instant
Assenbler will ask for three line numbers (with separate queries). *FIRST
LINE#?* and "FINAL LINE#?" designate the first and last lines of the block to
be moved, while ®INSRT LINE#?" is the line number at which the block will be
inserted. (It will be inserted just ahead of the line whose line number is the
INSRT LINE#.) The INSRT LINE# must either be less than the FIRST LINE# or
greater than the FINAL LINE# plus one; otherwise, you will get a "BAD® message
and a request for reentry of this line number. MB will obviously have a drastic
effect on many line numbers.

To move a block to the end of the program, first add a NOP at the end
(using the CC command), move the block to just in front of the NOP (INSRT LINE#
= %, using the current line pointer facility), then delete the NOP.

Page 13

1.3, Listing

In the listing commands, a first letter of "L" directs the listing to the
screen, while a first letter of "P* directs the listing to the line printer.
(If printer output is selected, have the printer turned on and ready.) The LL,
PL, and PR commands require one or two line numbers; enter these as explained
in Section 1.1 (at the end of the ED command).

For every screen listing command except LI, 12 (or, sometimes, 13) lines
are presented at a time for your inspection; when you are ready for the next 12
lines, press ENTER (or any key except BREAK, SPACE BAR, or UP ARROW). This
12=1lines-at-a-time progress of screen listings may bde overridden by depressing
the SPACE BAR. Holding the SPACE BAR down will cause continuous sarolling of
the 1isting; this scrolling will stop instantly when you release the SPACE BAR.
Rapid depression and release of the SPACE BAR will effect the listing of one or
two additional lines of the program. With the SPACE BAR released, ENTER will
act in its usual fashion to cause the listing of another 12 lines. When using
the LC or LL command, after a pause in the video listirg, the UP ARROW key will
cause the listing to move backward about 10 lines, so that you can review 1it.
Thus, the ENTER, SPACE BAR, and UP ARROW keys give you pin-point control of
listings to the screen,

In a listing to the line printer, Instant Assembler indents each line eight
spaces to provide a left margin for binding. After each 59 lines of printed
listing, Inatant Assembler supplies seven line feeds for pagination in the
standard (66 lines per page) printer format. The 59-counter is reset to zero
each time a new listing command is entered. The print parameters given here
(nhumber of spaces of indentation, number of lines per page), and a few others,
can be changed s0 as to produce printed output in almost any format that you
want; how to do so is explained in Appendix 6.

Any listing can be terminated by depressing the BREAK key and holding it
down for a bit.

All source code listings are assembly listings; the format is essentially
that of EDTASM, with the following exceptions:

(a) Bytes of hex code are separated by spaces for readability. (b) The
first four assembled bytes for a DEFM instruction are displayed as for other
instructions, Bytes after the fourth are not listed. (¢) The memory
addresses of all instructions except EQU's are shown at the extreme left of the
listing. No memory address is displayed for an EQU pseudo-instruction.

(It ia also possible to obtain source-only printed listings by changing certain
print parameters. See Appendix 6 for directions.)

Besides the screen listing commands described below, Instant Assembler
allows a quick listing of the current line. From the command level, press the
PERIOD key to display the current l1ine; the UP ARROW and DOWN ARROW keys
function similarly to 1ist either the line before, or the line after, the
current line. This current line listing facility also has an extension: By
holding down the SPACE BAR before pressing the PERIOD, UP ARROW, or DOWN ARROW,
you can cause 14 lines to be listed, ending with the current line, its
predecessor, or its successor.

Page 14

LC (List Completely)

LC causes a complete listing to be posted to the screen (with a pause after
each 12 lines unless the SPACE BAR is held down). A complete listing consists
of the ORG line (supplied by Instant Assembler), the assembled source code
(with an error message at the right end of each line in error), the END line
(also supplied by Instant Assembler), the error count, and the symbol table.
The symbol table is in alphabetic order and is printed four symbols to a line
for compactness. The poassible error messages in a listing are just these two:

®8Q0R®® (Out Of Range .~- relative Jjump is too long.)

*8yDSe® (UnDefined Symbol.)

(A source line may require two lines of listing. In this case, if an error
message is also required, it will appear at the right end of the second line.)

NOTE: If you use the UP ARROW key with the LC command to review the
listing, errors that are passed over will be counted again in the forward
listing, so that the final error count may be too large.

PC (Print Completely)
PC 18 like LC, except that the output is to the line printer.

LL (List to the Last line)

After the LL command is entered, Instant Assembler will ask for a "FIRST
LINE#?%, Respond with the line number (as a decimal, label plus offset, or
current line) of the first line to be listed. The listing will commence there
and continue (with a pause after each 12 lines) to the last source line, or
until the BREAK key is used to terminate the LL command. No symbol table will
be listed.

PL (Print to the Last line)
PL is l1ike LL, except that the output is to the line printer,

PR (Print a Range of lines)

After the PR command is entered, Instant Assembler will ask for & ®FIRST
LINE#?® and a "FINAL LINE#?". These are the numbers of the first and last lines
of source code to be listed, and may be entered independently as decimal
number, label plus offset, or current line. Output is to the line printer.

LI (List Internal errors)

All ®S8QOR®*® (Out Of Range) errors, all undefined internal symbols (those
not commencing with "&"), and all relative jumps to undefined external symbols
are internal errors. It is essential to correct a module's internal errors
before employing the Linking Loader to link it to other modules. The LI coamand
makes it easy to find and correct all internal errors in your program.

When the LI command is entered, Instant Assembler will display the first
source line that has an internal error and then pause. (This pause is at the
"line* level, as described under the ED command.) You now have three choices:

Page 15

(a) BREAK will return you to Instant Assembler command level, (b) Either
DOWN ARROW or ENTER will cause Instant Assembler to find and display the next
source line that has an internal error. (c) Pressing the "C"™ key opens the
displayed line for editing -- exactly as with the ED command. (The *C*® key
causes a descent to the cursor level.) When the editing is completed (by
pressing ENTER), and the edited line is accepted, Instant Assembler will find
and display the next source line that has an internal error.

After the last 1line with an internal error has been disposed of, the count of
internal errors will be displayed; this count will be zero if there were no
such errors to begin with,

PI (Print Internal errors)
The PI command causes all source lines with internal errors to be listed on
the line printer, with a count at the end.

LE (List External undefined symbols)

LE causes all external undefined aymbols to be listed to the screen; they
are listed in alphabetic order, eight to a line. Each symbol is listed only
once, even if it occurs several times in your progranm.

External undefined symbols may not be actual errors, since they may
correspond to labels in other modules. The LE command allows you to check that
no typographical errors have been made in these symbols. If real errors are
discovered, the FR command (Section 1.6) can be used to locate and correct them
painlessly.

PE (Print External undefined symbols)
PE is 1ike LE, except that the output is to the line printer.

LS (List Symbola)

LS causes the symbol table to be listed to the screen. This listing is in
alphabetic order, four symbols to a8 line. (External symbols are listed first.)
The defined value of each symbol is displayed next to the symbol. (Actually,
what is listed is a label table. Undefined symbols are not listed.)

PS (Print Symbols)
PS is like LS, except that the output is to the line printer.

Page 16

J.4. Tape Input/Qutput

In all its tape input/output functions lnstant Assembler prompts for the
items of information (titles, addresses) that it needs. Any tape command can be
aborted by pressing the BREAK key in response to a request for information. In
the Model III, all tape commands of Instant Assembler set the cassette speed to
500 baud to ensure reliable recordings and to allow necessary processing during
loading.

WS (Write Source)

The WS command is used to record a source tape (in Instant Assembler
format) of the program in the source buffer. After the WS command is entered,
you will be asked for a "TITLE?®. The title is restricted to 6 characters, the
first of which must be a letter; subsequent characters must be either letters
or digits. Have the tape ready for recording, with the PLAY and RECORD keys of
the cassette depressed. As soon as you press ENTER after typing the title, the
recording will begin.

VS (Verify Source)

After recording an Instant Assembler source tape with the WS command,
rewind the tape and use the VS command to verify it. (Have the tape ready for
reading before entering the VS command.) VS requires no arguments and returns
either "GOOD"™ or "BAD" in reporting on the verification. In case of a "BAD"
verify, try adjusting the volume before repeating the VS command; as a last
resort, record the program again and verify it.

RS (Read Source)

The RS command causes a source tape (recorded in Instant Assembler format
with the WS command) to be read into the source buffer for editing, assemdling,
or debugging. (This source code will replace any that is already in the
buffer.) If the source buffer is empty when you type the RS command, Instant
Assembler will ask for a "TITLE?®; when this has been entered, the tape will be
read. If the source buffer is not empty when you enter the RS command, Instant
Assembler will respond "CODE ERASURE. PROCEED (Y/N)?". If you decide to proceed
with the source input, type "Y"; you will then be asked for a "TITLE?". (The
title is restricted to six characters, the first of which must be a letter,)
Have the tape ready for reading as you complete the entry of the title. Instant
Assembler will report on the read with either a *GOOD"™ or a "BAD"™ message. In
case of a "BADY read, rewind the tape and try again (perhaps adjusting the
volume before the second try,)

WO (Write Object)

The WO command is used to record an object tape (in SYSTEM format) of the
program in the source buffer. After the WO command is entered, you will be
asked for a "TITLE?", an "ORIGIN?", and an “ENTRY ADDRESS?*. (The entry address
is the point at which the program will be entered after a SYSTEM load and a
response of "/" to the following "#2" prompt.) When the entry address has been
entered, recording will commence. (Caution: have the cassette ready for
recording, for the completion of this entry may not require pressing the ENTER
key.)

Page 17

The origin and entry addresses may be independently entered in any of the
following ways:

(a) By default to the value of the source code origin, as set with the RO
command and as displayed at the beginning of a listing with the LC command. To
request this default value, merely press the ENTER key in response to the
address query. (b) As a hexadecimal address. For this mode, enter the
address as four (or fewer) hexadecimsl digits. Do not enter a zero in front of
a leading A, B, C, D, E, or F. Do not type "H" at the end of the entry. (c)
As a decimal address. For this mode, enter five (no fewer) decimal digits. Pad
with leading zeroes to make up the required five digits. (This will not usually
be necessary, since nearly all programs will have origins above 10000 decimal.)

(Methods (b) and (o) are used throughout the Instant Assembler package for the
entry of addresses, Appendix 5 repeats this information.)

NOTE: Object code recorded with the WO command is in one contiguous block;
there are no skips for DEFS pseudo~ops. In fact, a DEFS instruction causes the
specified number of bytes to be recorded as zeroes on the object tape.

WE (Write Edtasm source tape)

The WE command is for recording a source tape (of the program in the source
buffer) that can be read and edited by EDTASM. You will be asked for a "TITLE?"
and an "ORIGIN?®; recording commences as soon as the latter is entered. (The
origin can be entered in any of the thfee ways described under the WO command.)
The 1ine numbers for a source tape produced with the WE command start with
00000 (for the ORG line) and proceed in steps of 10.

RE (Read Edtasm source, translate, and merge)

The RE command allows you to translate EDTASM source tape to Instant
Assenmbler format. You will be asked for a "TITLE?"; after this has been
entered, the entire EDTASM tape will be read into RAM above Instant Assembler's
source buffer. (If this code is too extensive to fit into your memory, reading
will halt with an "OUT OF MEM® report.) With the EDTASM source in memory,
translation commences; each source line is displayed on the screen, translated,
and added to Instant Assembler's source buffer. If an error is detected in a
line, translation is interrupted, an error message is posted, and a blinking
cursor appears in the offending field. (You are at the cursor level in the
editing process.) Make the necessary correction in the line, press ENTER, and
the translation and merging will continue.

NOTES: (1) The new source code is added to any code already in the source
buffer; if you want to clear out the buffer before translating an EDTASM tape,
use the CP command, answer *"Y" to the "CODE ERASURE. PROCEED (Y/N)?" query,
then press BREAK.

(2) Use of the BREAK key at any time in the translation process (including
during an edit) will terminate the operation. If you use tbe SHIFT-LEFT ARROW
while editing a line, that line will be deleted from the translated source
code.

(3) The ORG and END lines of the EDTASM source are translated as comment
lines in the Instant Assembler source.

Page 18

(4) Since some EDTASM lines do not permit direct translation to lnstant
Assembler format, a bit of ingenuity will occasionally be required to complete
the operation. For a tough problem like LD BC,END-BEG+1, you may have to make
a temporary change (to allow the translation to proceed), note where this line
‘occurs, and return to it for a more conscientious edit when the translation has
been completed. (For a number of suggestions on how to make these edits, refer
to Appendix 8.)

1.5, Disk Input/Qutput

In all its disk input/output functions Instant Assembler prompts for the
items of information (file names, addresses) that it needs; it also provides
protective mechanisms to minimize the chance of inadvertent erasure of either a
disk file or the source buffer. Any disk command cen be aborted by pressing the
BREAK key in response to a request for information. A blinking asterisk appears
in the upper right corner of the screen during disk transfers. If any error
occurs, the diagnostic message supplied by DOS is displeyed, and Instant
Assembler then allows you either to repeat or abort the operation.

0S (Output Source to disk)

To save source code (in Instant Assembler format) on disk, enter "0S® in
response to the "?* prompt. You will then be asked for a "FILE NAME?®". Enter
this name in standard file specification format, including extension and drive
number. (It is a good practice to designate your source code files with their
own reserved extension, such as ®SRC".) After the file name has been entered,
DOS will be requested to open the file. If no file with this name exists on the
disk, the file will then be initialized, the legend "NEW FILE." will be
displayed for your information, and the source code will be recorded and
verified.

If a file already exists on the disk with the file name that you entered,
Instant Assembler will respond, "FILE REWRITE. PROCEED (Y/N)?%". Type ®Y" here
to proceed with rewriting this file, or else type "N* (or almost any other
character) to abort the 0S command.

IN (INput source code from disk)

The IN command causes a source file (previously recorded using the 0S
command) to be read from disk and placed in the source buffer for editing,
assemdbling, or debugging. (This source code will replace any that is already in
the buffer.) If the source buffer is empty when you enter the IN command,
Instant Assembler will ask you for a *FILE NAME?" and then transfer the source
code from this disk file. If the source buffeer is not empty when you enter the
IN command, Instant Assembler will respond "CODE ERASURE. PROCEED (Y/N)?"; you
then have an obvious choice of proceeding with or aborting the input request.
If you proceed, the source buffer will be erased, and you will then be asked
for a "FILE NAME?",

Page 19

MG (MerGe source code from disk)

The MG command allows you to merge Instant Assembler source modules. You
will be asked for a "FILE NAME?"; after this has been entered, the entire
Instant Assembler source file will be read into RAM above the source buffer.
(If this code is too extensive to fit into your memory, reading will halt with
an "OUT OF MEM" report.) With the new source file in memory, merging commences;
each line is displayed on the screen and added to Instant Assembler's source
buffer. If a detectable error is encountered, merging is interrupted, an error
message 1s posted, and a blinking cursor appears in the offending field. Edit
the error, make a note of where it was, preas ENTER, and the merging will
continue. (An error in merging is either a doubly defined label or an out of
range relative jump to an earlier label that is about to be doubly defined.
Change the second occurrence of the label, then, after the merging is complete,
you may use the FR command to find all references to the old label and change
the appropriate ones among these to refer to the new label.) The BREAK key may
be used at any time to terminate the merge operation. SHIFT-LEFT ARROW, used on
a line with an error, will delete that line.

00 (Output Object code to disk)

The 00 command is used to record (on disk) an assembled vesion of the
program in the source buffer. This recorded program is in standard disk object
format, ready to be loaded and executed from DOS. To use the command, type "00"
in response to the "?" prompt. You will then be asked for a "FILE NAME?*, an
"ORIGIN?", and an "ENTRY ADDRESS?". The origin and entry address may be entered
in any of the three ways that are given under the WO command (Section 1.4.) and
in Appendix 5. When all this information has been entered, DOS will be
requested to open the file. Depending upon the outcome of this request, Instant
Assembler will report "NEW FILE." (followed by transfer of the object code to
disk) or *"FILE REWRITE. PROCEED (Y/N)?". In the latter case you then have a
choice of continuing or aborting the operation.

NOTE: Object code recorded with the 00 command is in one contiguous block;
there are no skips for DEFS pseudo-ops. In fact, a DEFS instruction causes the
specified number of bytes to be recorded as zeroes in the object file.

OE (Output Edtasm source to disk)

The OE command is for recording (on disk) a source file that can be read
and edited by disk EDTASM. After entering this command, you will be asked for a
*FILE NAME?" and an "ORIGIN?", Enter the origin in any of the three ways given
under the WO command and in Appendix 5. When this information has been entered,
DOS will be requested to open the file. Depending upon the outcome of this
request, Instant Assembler will report "NEW FILE."™ (followed by tranafer of the
source file to disk) or "FILE REWRITE. PROCEED (Y/N)?". In the latter case you
then have a choice of continuing or aborting the operation.

The line numbers for an EDTASM source file produced with the WE command
start with 00000 (for the ORC line) and proceed in steps of 10. The source file
is normally recorded with six initial ASCII spaces (a dummy title), which seems
to be the format that is expected by most disk versions of EDTASM. It is
possible, however, to suppress these six characters in the recording if your
Disk EDTASM doesn't accept them; how to do so is explained in Appendix 6.

Page 20

IE (Input Edtasm source, translate, and merge)

The IE command functions exactly like the RE command (Section 1.4), except
that you are asked for a "FILE NAME?* (instead of a "TITLE?®), and the input is
from disk. Refer to the RE command for a complete description of this
operation. :

While Instant Assembler is a complete assembly system, the OE and IE
commands have been provided so that you may use it in conjuction with EDTASM.

1.6, Miscellaneous

AM (Assemble-to-Memory)

The AM command permits you to assemble a source program directly into
memory. Once assembled, the program may be debugged with the debugging
subsystem (MicroMind). After the AM command has been entered, Instant Assembler
will respond “1ST FREE MEM: XXXX®, where the XXXX is the hexadecimal address of
the first memory location avajlable for the assembly. You will then be asked
for an "ORIGIN?®, which may be entered in any of the three ways that are given
under the WO command (Seotion 1.4.) and in Appendix 5. This origin must be at
least as high as the number announced in the 1ST FREE MEM report; otlierwise,
Instant Assembler will respond *"BAD® and ask for the origin again. Also, the
origin must be low enough to allow the assembly to take place in the remainder
of RAM; if it is not, Instant Assembler will reply "OUT OF MEM®" and ask for the
origin again.

When the assembly is finished, the total number of errors encountered will
be reported. Also, the address that you entered in respose to the "ORIGIN?"
request will now be the origin af the source code; thus, if you list the
program, the listing will correspond exactly to the assembled program.

RO (Reset Origin)

Use the RO command to define (or redefine) the origin of the source
program, After the RO command is entered, you will be asked for an "ORIGIN?",
Enter this in either decimal (five digits) or hexadecimal (four or fewer hex
digits) -- see Appendix 5.

FR (Find References)

The FR command enables you to find (and edit, if you choose) all
instructions in the source program that reference any specified symbol. Instant
Assembler responds to the FR command with the query "FIND?®. Answer this by
entering any symbol that is in the source code. (If you enter a nonexistent
symbol, Instant Assembler will merely repeat the *FIND?" question.) Instant
Assembler will then display the first source line that references this symbol.
The pause that follows (which is at the "line" level, as descridbed under the ED
command) gives you three options:

(a) BREAK to return to Instant Assembler command level. (b) DOWN ARROW
or ENTER to find and display the nexlL source line that references the specified
symbol. (c) "C" to open the displayed 1ine for editing -~ exactly as with
the ED command.

Page 21

After the 1ine has been edited (assuming the "C" option was exercised), Instant
Assembler will find and display the next line that references the specified
symbol. After the last line containing such a reference has been disposed of,
Instant Assembler will ask for another symbol by repeating the °*FIND?"
question. Use the BREAK key to terminate the FR mode.

DI (DIrectory)

The DI command allows you to view a diskette directory without leaving
Instant Assembler. This command functions under four operating systems: NEWDOS
80, DOSPLUS 3.8, Model III TRS-DOS, and Model III LDOS 5.1. As it comes to you,
the DI command is set to work with Model III TRS-DOS; how to change it to work
with another operating system is explained in Appendix 6.

After entering the DI command, you will be asked for a "DRIVE #?". Respond
with ®g®, «qe, wo%. or *"3", as appropriate. The directory will then be
displayed. (With Model III TRS-DOS, only the names of the first 48 files on the
disk will be shown.)

KL (Kx4ilL)

The KL command permits you to kill a file without leaving Instant
Assembler. After typing the command, you will be asked for a "FILE NAME?". When
this has been entered, Instant Assembler will reply "KILL. PROCEED (Y/N)?*.
Either type *Y® to kill the file or "N™ to abort the KL command.

£X (EXit to DOS)
Use the EX command to exit safely to DOS.

MD (transfer to microMinD)
Use the MD command to transfer control to MicroMind -~ the debugging
subsysten of Instant Assembler.

Page 22

SEC

Load and run Instant Assembler, and enter the CP command. Then compose the
following source code. (Line numbers are furnished by Instant Assembler, of
course.)

0001 ;HEX-TO-DECIMAL CONVERTER == PART 1

0002 &BEGIN CALL 1C9H ;CLEAR SCREEN

0003 LD HL,3C14H

0004 LD (4020H) ,HL

0005 LD HL,TITLE

0006 CALL &VIDOT sDISPLAY TITLE

0007 CALL &CARET

0008 INPLP CALL &CARET

0009 LD HL, HEXNM

0010 CALL &vVIDOT sDISPLAY PROMPT
0011 CALL &KBINP sTAKE INPUT

0012 LD HL, &BUFFR

0013 CALL &CONVT $CONVERT TO BINARY
0014 JR C, INPLP ;IF ENTRY IS BAD
0015 LD A, (4020R)

0016 AND OCOR

0017 ADD A, 11

0018 LD (4020H) ,A ;TAB 11 SPACES
0019 LD A, <Y

0020 CALL 33AH ;DISPLAY THE <!
0021 LD A,20H

0022 CALL 33AH sTAB 1 SPACE

0023 EX DE, HL sBINARY NUMBER IN HL
0024 CALL O0A9AH $SET TYPE FLAG
0025 XOR A

0026 CALL 1034H

0027 OR (HL)

0028 CALL. OFD9H sCONVERT TO DECIMAL
‘0029 LD HL,4131H

0030 CALL &VIDOT ;DISPLAY DECIMAL NUMBER
0031 JR INPLP

0032 TITLE DEFM 'HEX-TO-DECIMAL CONVERTER'

0033 DEFB 0 sMESSAGE TERMINATOR
0034 HEXNM DEFM ‘'HEX#? °

0035 DEFB 0

0036 ;

0037 ;PART 2 -~ VIDEO OQUTPUT AND CONVERSION ROUTINES
0038 &VIDOT LD A, (HL) sNEXT CHARACTER
0039 OR A

0040 RET 2 ; IF TERMINATOR

oou1 CALL 33AH sPOST TO SCREEN
0042 INC HL

0043 JR &VIDOT

0044 &CARET LD A,ODH s CARRIAGE RETURN
oous JP 33AH

0046 &CONVT LD DE,0 ;INITIALIZE ACCUMULATOR
0047 NXTHX PUSH HL sSAVE POINTER

0048 EX DE, HL

Page 23

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
006 4
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100

DIGIT

;
;PART 3
SKBINP

POST

NXTCH

BKSPC

CRET

&BUFFR
DOS

ADD
ADD
ADD
ADD
EX
POP
LD
SUB
RET
Ccp
JR
SuB
RET
cp
CCF
RET
OR
LD
INC
DJNZ
RET

HL, HL

HL, HL

HL,HL

HL,HL

DE, HL :DE MULTIPLIED BY 16
HL ; POINTER

A, (HL) {NEXT HEX DIGIT
30H

c ;BAD ONE

10

c,DIGIT ;IF 0-9

7

c ;BAD ONE

16

Cc +BAD ONE

E

E,A sADD TO DE
HL

NXTHX

~=- KEYBOARD INPUT ROUTINE

LD
LD
LD
CALL
LD
cp
JR
CALL
LD
cp
JR
cp
JP
cp
JR
INC
INC
JR
LD
OR
JR
LD
DEC
DEC
JR
LD
JP
DEFS
EQU

B,0 s INITIALIZE CHAR COUNT
HL, $BUFFR

A, 14 ;TO TURN CURSOR ON
33AH

A,B

4

2,CRET ;IF LIMIT IS REACHED
49H ;GET NEXT CHARACTER
(HL),A ;PUT IN BUFFER

ODH

2,CRET ;{IF ENTER KEY

3

z,D0S ;IF CLEAR KEY

8

2, BXSPC ;IF LEFT ARROW KEY
HL

B ; INCREASE COUNT

POST

A,B

A

2, NXTCH ;IF NO CHARS ENTERED
A, (HL)

HL

B ;BACK UP 1 CHAR

POST

A, 15 ;TO TURN CURSOR OFF
33AH

"

K02DH

Page 24

In entering the above program you may need to refer frequently to the
procedures detail ed under the CP command in subsection 1.1 of Section 1. When
you have finished, you will have obtained a working knowledge of most of these
procedures. (Did you use SHIFT-1, SHIFT-3, SHIFT-4 for DEFB, DEFM, and DEFS?)
The.on-line comments do not have to be aligned when you enter them; they will
be aligned automatically in all listings. Also, if you have ®a Model I1l1I, you
could enter the comments in lower case.

After the last line has been entered, press the BREAK key and type "LI%. If
you have done your work correctly, you should get the response, "ERR COUNT:
000". (If not, you may edit the error lines one at a time as they are
displayed.) Then type "LE* to check that there are no external undefined
symbols. Next, type "LS" and take a look at the symbol table:. Note that the
values of the symbols are low because an origin of 0 has been assumed for your
program. You may use the RO command to change the origin to anything you wish.
Now type ®"LC® and use the ENTER key to go through the entire source program 12
lines at a time, checking it carefully against the above listing. If you have a
printer, turn it on, make it ready, and enter the PC command to obtain a
printed listing of the program.

Now use the OS command to make a disk file of this program for later use.
Give it the file name *HDCONV/SRC®. Then, with the DM command, delete lines
"$VIDOT-2" through "DOS"., If you have done this correctly, only lines 1-35 (and
the ORG and END lines) will remain, and there will now be eight *#sypstew
errors in the residual program. Since all these errors are references to
external labels that will ultimately be resolved by Linking Loader, they are
acceptable. Make a disk file of this segment of the program (with the 0S
command), giving it the file name "HDCNV1/SRC".

Next, use the IN command to read the HDCONV/SRC file. (You will have to
override the source buffer protection feature to do this.) With the original
program in the source buffer again, delete (with the DM command) lines 1
through "HEXHM+2® and lines "&KBINP-2" through ®DOS®, retaining Part 2 of the
program. (Part 2 by itself should show no errors when listed.) Make a source
file of this segment, using the title "HDCNV2/SRC". Finally, load the
HDCONV/SRC file once more (with the IN command), delete lines 1 through
"¢KBINP-2%", and make.a source file of Part 3 (which also should have no
errors), giving it the title "HDCNV3/SRC®. Save these four disk files for later
practice with MicroMind and Linking Loader.

By this time you have exercised many of the commands of Instant Assembler.
To practice using the rest of the commands, read in the HDCONV/SRC file again.
Enter the AM command, answer the ®ORIGIN?" query with ®"9000%, and press ENTER.
Your program will be assembled into memory starting at 9000H, and Instant
Assembler should report "ERR COUNT: 000". Transfer to MicroMind by typing "MD",
Then enter the JP command, respond to the query ®"ADDRESS?" with *9000", and
press ENTER., Your hex-to-decimal converson program will now execute. cnter any
hex number of up to four digits (pressing ENTER if the number of characters is
less than four), and the number will be instantly converted to its decimal
equivalent, When you tire of this, press the CLEAR key, and control will be
transferred to DOS. From there you may reenter Instant Assembler by typing
“IASTRF* and pressing ENTER. You will find the source buffer intact.

If you wish, you may make an object file of the hex-to-decimal converter.
Use the 00 command, and give it a file name of "HDCONV/CMD®, an origin of 9000H
(press ENTER for the default origin), and an entry point of 9000H (also by
pressing ENTER in response to the query). Later, you can load and execute this
file from DOS. Also, you may make an EDTASM source file with the OE command;
save this for later review when you have EDTASM in your computer.

Page 25

To see how the block move command operdtes, type *MB®", and then move Part 3
of the program to just in front of Part 2. (FIRST LINE# = &KBINP-2, FINAL LINE¢
= DOS, and INSRT LINE# = HEXNM+2.) Next use the FR command to find all lines
that reference the "&VIDOT® label. End this session with Instant Assembler by
practicing inserting (I1S), deleting (DL), and editing (ED).

(Since you may be interested in the inner workings of the hex-to-decimal
converter, a few words are in order to clarify some of its more mysterious
instructions. The program uses several ROM subroutines; otherwise, it would be
ouch longer than it is. The ROM subroutine at 1C9H clears the screen. The one
at 33AH displays a character at the cursor position and updates the cursor. The
subroutines at 0A9AH, 1034H, and OFD9H act to convert a 16-bit binary number to
a string of decimal digits. The subroutine at 49H scans the keyboard and
decodes the input characters. Locations 4020H-4021H contain the address of the
video memory cell in which the cursor resides. Any remaining mysteries could be
solved by using MicroMind to step through the program.)

Page 26

SECTION 3, INSIDE INSTANT ASSEMBLER

This section is a collection of tidbits and hints -~ information about your
assesbler that you will eventually want to have.

(1) Whenever you want to exit to Instant Assembler's command level, use the
BREAK key. The only time that this won't work is when you are editing a source
line, in which case BREAK acts like ENTER.

(2) 'The line number of any instruction -- instead of being fixed as it is
in EDTASM -~ is determined by the relative position of the instruction in the
source buffer, which may change as a result of insertion, deletion, or block
movement. This implicit line numbering has several advantages over fixed line
numbering. For one thing, it allows continuous insertion of new lines without
periodic interruptions for renumbering. Also, the block movement command is
ouch easier to implement with implicit line numbering. And -- not least --
implicit line numbering saves a great deal of space in the storage of the
source code. Of course, there are some disadvantages, too. One of these shows
up when you want to delete two or more nonadjacent lines of code. For exaumple,
suppose that you wish to delete lines 69 and 85; if you first delete line 69,
you will find that the other line is now number 84. One way to handle this
problem is to delete from the top down. (In the example, delete line 85 first.)
Another way is to address each line by its label (plus offset); in fact, this
ability to address a line by its label (plus offset) frees you from dependence
upon absolute line numbers, As a last resort, you can always find the
up-to-date line number of any instruction by using the LL command.

(3) There are limits to the size of a source module that can be
constructed. The first limit is imposed by memory size. If you run out of
wmemory while composing a program, Instant Assembler will report "OUT OF MEM"
and exit to command level. Another limitation is that the total number of
symbols may not exceed 1024. If a pewly entered symbol would exceed this limit,
composition is halted with a "SYMB OVF" (symbol overflow) message. The final
constraint is that your program's length should not exceed 32768 bytes (of
object code). The only possible way that this limit could be exceeded before
you run out of memory is for you to reserve a great amount of atorage (with
DEFS's) in your program, Instant Assembler provides no protection against this
most unlikely overflow; you are responsible for seeing that it doesn't happen.

(4) Deletions from Instant Assembler source code do not result in deletions
from the symbol table of that source code. If a module goes through many
revisions, it may collect a number of dead symbols in its table. Since these
dead symbols still apply to the 1024 limit of (3) above, it might be desirable
at some time to purge the symbol table. This can be done by merging (with the
MG command) the source module into an empty source buffer.

(5) When a listing to the screen pauses after 12 lines, you are still in
listing mode, If you wish to edit one of the displayed lines, press BREAK (or
almost any other key) before typing the ED command.

(6) If you want to move a line that has a label, either use the MB command,
or else delete the line before reinserting it. An attempt to insert the line
before it is deleted will result in a "DBLY DFND LABEL® error.

(7) For the most part, numeric constants are listed in the same form in
which you enter them. However, there are a few exceptions. All index register
offsets are listed in decimal., The operand of any RST instruction (if greater
than 8) is listed in hexadecimal. All 16-bit hex values are listed with four or
five hex digits; thus, CALL 60H is listed as CALL O0Q060H. (This quirk is at
the request of Bryan Mumford,) 8-bit hex constants are listed without
unnecesssary leading zeroes, however,

Page 27

(8) Origins and entry addresses entered in hexadecimal do not require a
terminating H or a leading zero. This feature is for your convenience.

(9) When the source buffer is empty, the message "NO CODE"™ will be
displayed in response to any command that would operate on the source code.

(10) External labels are those that commence with an ampersand. You may use
them whenever you feel like it; all your labels may be external if you choose.
However, you need to use them only if the program module that you are composing
will be loaded together with other modules that reference it. Then, every
instruction and storage location in this module that will be referenced by
another module must be given an external label. Later, Linking Loader will be
able to assemble and 1ink all the modules. (Linking Loader does not check for
doubly defined external labels, so you must be careful that you use each
external label in only one module. Any nonexternal label may be used in as many
modules as you please.)

(11) An instruction like LD HL,STORE+512 4is not accepted by Instant
Assembler because of the size of the offset. To construct an equivalent
instruction, simply use another label closer to the target address. (A DEFS
instruction ahead of the new label may be necessary for correct positioning.)

(12) An tnstruction like LD BC,END~-BEG+1 presents a harder prodlem, and
may require the expenditure of a few additional bytes of code. The following
coding will always suffice, and may be shortened (by deleting the PUSH and POP)
if the HL register pair is free at the time.

PUSH HL

LD HL,END#1
LD BC,BEG
OR A

SBC HL,BC
LD B,H

LD C,L

POP HL

(13) Although Instant Assembler does not permit the use of symbols to
represent 8-bit values, there is usually an easy way around this limitation,
too. A typical example of the use of an 8-bit symbol is the following:

OUT PORT1,A

with the symbol PORT1 defined by means of an EQU. (The purpose of this is to
make it easy to change all port numbers by changing one EQU.) The following
Instant Assembler-compatible code will accomplish the same objective:

DEFB OD3H s ®OUT*® INSTRUCTION

DEFW PORT1 ; PORT NUMBER

The 16~bit value for PORT1 (established by an EQU) will have a high-order byte
of zero, which is a NOP to the 2-80.

(14) Instant Assembler has been carefully designed to make it difficult for
you to wipe out the source buffer inadvertently. If you want to do this
deliberately, use the CP command, respond "Y" to the ®CODE ERASURE. PROCEED
(Y/N)?* query, then press BREAK.

(15) If your printer has trouble working with Instant Assembler, or if you
would like to change the format of printed listings, make a careful study of
Appendix 6. Then, try changing some of the print parameters.

Page 28

(16) When Instant Assembler prompts you for information (FILE NAME?,
ORIGIN?, etc.), it does not permit you to enter more characters than the
paximunm number that any correct answer could use. If you enter this maximum
number of characters, Instant Assembler will immediately analyze your response;
you do not have to press the ENTER key in this case. Exception: Your answer. to
the "TITLE?® query must be completed by pressing ENTER.

(17) The upper and lower halves of the IX and 1Y registers can be
independently addressed through a number of undocumented 2-80 instructions.
These half-registers are given the names IXH (IX high), IXL (IX low), IYH, and
IYL. Por example, CP IXH 48 a two-byte instruction that compares the A
register with the upper eight bits of the IX register. The instruction forms in
Appendix 1 that contain the symbol "x® as an operand correspond to the
undocumented instructions. Instant Assembler will recognize and assemble any of
these forms. These intructions provide you with four additional 8-bit
registers, with an overhead charge of one extra byte of object code per
instruction.

(18) Instant Aasembler source code is closer to object code than it is to
text. The actual format is as follows: Each instruction is preceded by a
bit-encoded header byte that contains information about the type and length of
the instruotion, whether the instruction has a label, whether it references a
symbol, and whether an extension byte is needed to provide further information.
This header byte is followed by the object code for the instruction, except
that a symbolic address is represented by the number of the symbol (that is,
its position in the symbol table) rather than the value of the symbol. If an
extension byte 1s needed, it faollows the object code. An extension byte may
contain an extension of the symbol offset, format information for liating the
instruction, and a flag to indicate an on-1line comment. Any on-line comment
then follows the extension byte (headed by a byte giving its length). In
addition to the code structure just outlined, Instant Asseabler source also
contains a symbol table. Each symbol is kept in 10 consecutive bytes of the
table; six of these bytes hold the actual characters of the aymbol, two bytes
contain the value of the symbol, and two bytes serve as a linked 1ist pointer
to the next symbol in alphadbetic order. The ®"value® of a symbol == other than
an EQUated symdol == is its offset from the origin of the source code module.

(19) If at any time you find yourself back in DOS and want to return to
Instant Assembler without destroying the source buffer or resetting the memory
protection (in SAFEH-5AFFH), merely type "IASTRF® and press ENTER. IASTRF
employs the nondestructive reentry to Instant Assembler at 5BO3H, an address
that you may use from any other program that has a transfer capability.

Page 29

PART 11. THE DEBUGGER

Instant Assembler's debugger is named MicroMind, and it is supplied in two
forms. The integral MicroMind is contained within the DSKIAS/CMD package and is
reached via the MD command from the assembler subsystem, The stand-alone
MicroMind is the MICROM/CMD file on your diskette. The two versions are
identical except for a few commands and the relocating feature of stand-alone
MicroMind. The command differences are treated in Sections 4.4 and 4.5, and the
procedure for relocating stand-alone MicroMind is explained in Section 6, item
(1).

SECTION 4, MICROMIND COMMANDS

MicroMind has 21 two-letter commands, which will be fully explained in this
section. (They are also summarized in Appendix 7.) As in the assembler
subsystenm, response to your command follows immediately upon typing the second
letter of the command. The command prompt in MicroMind is *®%, The BREAK key
can be used at almost any time to return to command level.

4.1. Stepping, Breakpointing, and Executing

SP (SteP)

This command puts MicroMind into the step mode, which allows you to step
through a machine language program one instruction at a time. This mode with
its register displays provides a nearly infallible tool for debugging. After
you have entered the SP command, you will be asked for a "FIRST ADDRESS?",
which is the address where you will begin to execute the machine language
program step-by-step. This address may be entered in either decimal or
hexadecimal. The rule for the entry of all addresses is: If five digits are
entered, the address is in decimal; if fewer than five digits are entered, the
address is in hexadecimal. (This rule is also explained in Appendix 5.)

Once you are in step mode, the registers will be displayed at the top right
of the screen, and you may fetch and execute instructions merely by pressing
ENTER. As each instruction is fetched, it is displayed in two lines at the top
left of the screen; the first display line shows the memory address and the hex
bytes of the instruction, while the second line shows the Z-80 mnemonic form of
the instruction.

ENTER actually half-steps through the target program. You see the FETCH and
EXECUTE cycles as separate half-steps, each activated by pressing ENTER. After
the EXECUTE cycle, another register display at the bottom right of the screen
shows the contents of the registers after execution of the instruction; the
BEFORE register display remains in the upper right corner of the screen, so
that the effect upon the registers of the instruction just executed can be
clearly seen. When the next instruction i1is fetched, the BEFORE display will
change to contain the information of the AFTER display from the previous
execution, and the AFTER display will be erased.

Page 30

The register displays are largely self-explanatory. Each double register is
presented with a designator followed by the (hex) contents of the register. The
most important flags are also displayed as separate bits; their designators arc
CY for CarrY, 2 for Zero, S for Sign, and PV for Parity/oVerflow. Following the
BC, DE, HL, IX, and IY displays are single hex bytes in parentheses; these
represent the contents of the memory locations pointed to by these 16-bit
registers. For example, if you see DE: 48FB (E6) in the display, you know
that the DE register pair contains 48FBH and that memory location U8FBH
contains OB6H. The two-byte hex number in parentheses following the SP (stack
pointer) display is the number (or address) on the top of the stack. This
number is presented in the natural form of high-order byte first, even though
the high-order byte is in the memory cell whose address is one more than the
contents of the SP register. The PC display shows the contents of the program
counter, which points (in the BEFORE display) to the memory location from which
the instruction has been fetched, or (in the AFTER display) to the memory
location from which the next instruction is'to be fetched.

In the SP mode you may fast-step through several (up to 99) instructions by
typing a two=-digit number in response to the *®#® prompt, For example, entering
®03® will cause three complete instructions to be executed in rapid succession.
The register displays show the register contents before the first instruction
is executed and after the last instruction has been executed. (This feature of
MicroMind is especially helpful in working through a short loop that has to be
executed many times.)

NOTES: (1) Once you are in SP mode, ¥ou will not permanently exit from it
except with a JP (JumP), CL (CallL), or (in integral MicroMind) IA (transfer to
Instant Assembler) command. However, you can reinitialize the mode with another
SP command. (2) When you are in SP mode and the "#" is displayed, pressing
ENTER will always cause the next half-step (FETCH or EXECUTE) to be carried
out, This is true even if you have made extensive use of other commands since
your last step. To clear the left side of the screen so that the FETCH or
EXECUTE cycle can be clearly observed, merely press BREAK. (3) Not all hex
numbers can be decoded as legitimate Z-80 instructions. In the unlikely event
that MicroMind encounters such an indecipherable combination in the instruction
stream while stepping, it will treat each byte as a NOP for execution (and
display no mnemonic for that byte) until it arrives at the next recognizable
instruction. Further discussion of this point will be found under the DS
command in Section 4§.3.

XC (eXeCute)

XC is operative only in step mode, and only if the last instruction fetched
is a CALL, conditional CALL or RST (restart). Its effect is to execute the
called subroutine as a whole, without stepping. It is useful when the target
subroutine has already been debugged. The register displays show the contents
of the registers before the subroutine is called and after it has been
executed. If the XC command is entered when it is inapplicable, it is simply
ignored, and another *"&" prompt is issued. If the fetched instruction is a
conditional call, and if the condition is not met, the XC command merely has
the effect of stepping through the conditional call instruction without
executing the subroutine.

Page 31

BD (Blank Display)

This command is operative only in step mode. Its effect is to clear the
screen (except for less than half a line in the extreme lower left corner), to
transfer an abbreviated display of the fetched instruction to the lower left
corner of the screen, and to permit continued stepping with the target program
in control of the screen (except for the half-line in the lower left corner).
Pressing ENTER now causes execution of the fetched instruction and fetching of
the next instruction in sequence (full-stepping rather than the half-stepping
of SP mode). No register displays are available in BD mode; the target program
can be traced, but a detailed examination of its workings is no longer
possible.

To return from BD mode to regular SP mode, merely press the BREAK key;
there will be no loss of place or of continuity in stepping through the target
program.

The BD mode has been designed to allow you to see a target program print on
the video acreen. Since many instructions are normally required to post even
one character to the screen, single-stepping through a video display routine
can be distressingly slow. Therefore, MicroMind provides three sub-commands in
BD mode to speed up the action:

(1) Depressing the R (for Run) key while in BD mode causes stepping to
occur at about 140 instructions per second. Releasing the R key terminates the
fast-stepping and returns you to the single-stepping (via the ENTER key) of BD
mode, (2) The S (for Seek sudbroutine) key has the fast-stepping effect of
the R key, except that fast-stepping {s terminated whenever a CALL, conditional
CALL, or RST is encountered in the instruction stream. Often keyboard input
requests are mixed in with video output, and stepping (even fast-stepping)
through an input routine can be an aggravation, Use of the S key in BD mode
allows you to fast-step until a subroutine call is reached, then pause long
enough to use the X key. (3) The X (for eXecute) key permits execution of
the subroutine as a whole. The X key is to BD mode what the XC command is to SP
mode,

RN (RuN)

RN is also operative only in SP mode; this command enables fast-stepping
(with a blank screen) to any designated terminal address. After you have
entered the RN command, you will be asked for a "FINAL ADDRESS?". This is the
address of the last instruction to be fetched. (The run will be ended when this
instruction is fetched but not executed. The run starts, of course, from the
instruction that you have reached in SP mode.) The FINAL ADDRESS should be
entered in accordance with the usual rule for entering addresses (Appendix 5).

The RN command permits you to execute rapidly a portion of the target
program without leaving or reinitializing the SP mode, and with the assurance
that your designated terminal point (which may even be in ROM) will be honored.
When the final address has been reached in RN mode, the fast-stepping will
stop, and you will be in BD mode.

If you wish to exit from RN mode before the terminal address is reached,
press the BREAK key. You will then be in BD mode, from which you may continue
with single-stepping, or use the R, S, and X keys, or return to SP mode by
pressing BREAK once more. Note, however, that if you now use the R key, it will
return you to RN mode (running to the designated final address); that isa,
releasing the R key now will not terminate the (still unsatisfied) run -- only
the BREAK key can do that in this instance.

Page 32

BK (BreaKpoint)

The BK command allows you to set a breakpoint in RAM. After "® BK", you
will be asked for an "ADDRESS?®". This should be the address of the first byte
of some instruction in the target program. (MicroMind will not accept any
address lower than 4000H.) MicroMind will then replace three bytes of the
machine language program with a jump to a MicroMind entry point and will
confirm the breakpoint with the message "BREAK AT (address)®. (The three
replaced bytes are saved for later restoration.,) If the BK command is entered
when a breakpoint is already in effect, the same message will appear (with the
old breakpoint address) in rejecting the command,

Upon return from a breakpoint, an AFTER register display will appear in the
lover right corner of the screen, showing the contents of the registers at the
completion of the program segment terminated by the breakpoint.

RB (Restore Breakpoint)

RB undoes the effect of BK. It may be used if you change your mind about
the breakpoint that you have set, or it may be used after returning from a
breakpoint. Since only one breakpoint can be in effect at any one time, RB
might be used to restore an old breakpoint so that a new one may be set. When
the RB command is entered, the confirmation "BREAK, (AT (address) RESTORED™ will
appear, assuming that a breakpoint was actually in existence; if there was no
breakpoint, the legend ®"NO BREAK™ will be displayed.

SB (Step from Breakpoint)

SB combines the effects of RB and SP, with the latter commencing at the
address of the breakpoint. That is, the breakpoint will be restored, and the
instruction at the address of the breakpoint will be the first one fetched for
step-wise execution. SB is useful after a return from a breakpoint, at which
time the registers will be in exactly the condition in which the progranm
segment just executed has left them. If the SB command is entered when no
breakpoint is in effect, the legend "NO BREAK"™ will appear.

JP (JumP)

The JP command allows you to transfer control to any point in memory,
including ROM, After "® JP", you will be asked for an ®"ADDRESS?®. (To change
your mind at this point, use the BREAK key to cancel the JP command.) When this
address has been entered, the registers will be loaded with the values shown in
your last register display (if you were in SP mode), and the jump will be taken
to the specified addresss. JP is useful in conjunction with a breakpoint; after
setting a breakpoint with BK, use JP to execute part of a machine language
program and then return to MicroMind.

It is obvious that caution must be exercised in the use of JP, since
control is taken out of the hands of MicroMind. In particular, if the jump
address is five digits (decimal), be certain that you have entered it correctly
before typing the last digit, for the fifth digit automatically triggers the
Jump,

Page 33

CL (Call)

The CL command allows independent execution of any closed subroutine in ROM
or RAM, After entering the CL command, you will be asked for an “ADDRESS?®.
Respond with the entry point address of the subroutine to be executed. As soon
as the address entry is completed, the screen is cleared, the registers are
loaded with the values shown in your last full register display (if you were in
SP mode), and control is transferred to the target subroutine. (1f you wish to
adjust the contents of the registers before calling the subroutine, use the RG
command, which is explained in the next section.) The return will be to
MicroMind. You may inspect the contents of the registers after execution of the
subroutine by using the SP command (with any PIRST ADDRESS) to call up a full
register display.

4,2, Register and Memory Display

RGC (ReCister display and change)

The RG command allows you to inspect and change the contents of a target
program's registers. Following ®® RG", you will be asked to name a register by
the query "REG?®. You may answer this question with ®A®, ®CY® (for CarrY), ®2°®
(for Zero), "S™ (for Sign), "PV* (for Parity/oVerflow), "BC", *DE", ®HL®™, *IX",
"IY®, or "SP* (for Stack Pointer). A two-letter name automatically triggers the
display of the contents of the named register; if your request is for the A, 2,
or S register, you must press ENTER to trigger the display. Note that the flags
can be inspected and changed as conveniently as any of the other registers.

When the register's name has been entered, its contents will be displayed
to the right of the name, followed by a LESS THAN prompt. To change the
contents of the register, enter a new byte (in hex) for the A register, either
"0" or "1* for a flag, or a new number (in address format -~ either five
decimal digits, or four or fewer hex digits) for a double register. (If you
enter a new byte with only one hex digit for the A register, you will have to
press ENTER to complete the entry.)

If you were in SP mode before using the RG command, and if you were between
FETCH and EXECUTE cycles, then all register changes will be immediately
reflected in the BEFORE register display. Such changes will not be shown,
however, after an EXECUTE cycle -- they will appear after the next FETCH cycle.

If you don't wish to change the contents of a displayed register, Jjust
press ENTER. Completing an entry on one line (either by entering a change for
the register or by pressing ENTER) will cause a new "REG?"™ query to appear on
the next line. To exit RG mode, use the BREAK key, either in response to the
LESS THAN symbol that prompts the register change, or in response to the “REG?"
query. You will be returned to SP mode if you were there before using RG, and
you may then continue stepping through a program.

The RG command is useful in debugging for the following reason (among
others): Often you will discover an error that adversely affects register
contents. Rather than having to abort the debugging procedure to make a change
in the program, you may make a note of the discovered error, use RG to set the
registers right, and then continue stepping.

Page 34

MM (MeMory display and change)

MM allows you to inspect and change the contents of memory locations. (ROM
may be inspected, too, but not changed.) After *® MM", you will be asked for a
*FIRST ADDRESS?", which again may be in either decimal or hex. After a memory
cell is displayed (one hex byte following the hex address of the cell), a LESS
THAN prompt will appear, and you may change the contents of the cell by typing
your new byte (which must be in hex). (If you type a single character here, the
transaction nust be completed by pressing ENTER. A two-character entry
automatiocally triggers the change.) When the change has been entered, the
display advances to the next memory cell. If you press ENTER without entering a
change, the display also advances.

In integral MicroMind, if you press the DONN ARROW (or the UP ARROW) key
without entering a change, the display will be advanced (or backed up) one
memory location. (These features are not implemented in stand-alone MicroMind.)

If you want to back up, or to advance, one or more addresses, use the MINUS
(-) key, or the PLUS (¢) key, respectively, followed by the number of addresses
that you wish to back up or advance. (These two characters are typed in lieu of
a hex byte for changing the contents of the memory cell.) Following the MINUS
or PLUS, digits 0-9 will have their natural effect, while letters A, B, C, ...,
Z will back up or advance the address by 10, 11, 12, ..., 35 locations
(respectively).

To exit from MM mode, use the BREAK key. If yoy were previously in SP mode,
you will be returned precisely to where you were before you used the MM command
-- except, of course, that some memory cells may have been changed. (If you
were between FETCH and EXECUTE cycles, the instruction fetched will remain the
same even if you changed it in memory during the MM operation.) Memory changes
will be immediately reflected in the BEFORE register display if (and only if)
you are between FETCH and EXECUTE. (Remember that the register display shous
the contents of those memory logations that are pointed to by the doubdble
registers BC, DE, HL, IX, 1Y, as well as the two-byte number on the top of the
stack.)

AS (AScii display)

The AS command allows you to decode blocks of memory as ASCII characters.
After "® AS®, you will be asked for a "FIRST ADDRESS?®*., Respond with the
starting address of the block of memory that you wish to examine. MicroMind
will then display five lines of 10 characters each and pause, awaiting your
next directive. Pressing either the DOWN ARROW or the ENTER key will cause the
next five lines of 10 characters to be displayed, while pressing the UP ARROVW
key will cause the display to back up 50 characters. Press BREAK to end the AS
mode,

Here's an example of the use of the AS command: With MicroMind running,
enter the AS command and give it an address of 1650. You will then be reading
the start of the BASIC command table in ROM. Press DOWN ARROW repeatedly to
scan this table. Note the small graphics block at the upper left corner of the
initial letter of each command. This block indicates that the character {n
memory has bit 7 set. A graphics block at the left middle of a character
indicates that it is actually a lower case character. A two-wide graphics block
where a character should be indicates that the number in memory cannot be
deciphered as an ASCII character. And, finally, a three-tall graphics block
where a character should be indicates a carriage return.

Page 35

P1 (Page 1)

The P1 command is used to display a small block of memory. After *& P1%,
you will be asked for a "FIRST ADDRESS7". When you have responded, 19
consecutive memory cells starting at this address will be displayed at the
next-to-bottom line of the screen. (Page 2 will simultaneously be displayed at
the bottom line.) The two-byte bex number at the extreme left of the P1 display
line is the address of the first memory cell of the display.

When MicroMind has posted the P1 diasplay, it will wait until you press
another key. Pressing either the DOWN ARROW or ENTER key will advance the
starting address of the P1 display by 10H, while pressing the UP ARROW key will
back up the display by 10H. Either of these actions may be repeated for as long
as you desire; thus, you may quickly scan a large section of memory. Press the
BREAK key to return to the facilities of MicroMind.

When MicroMind is first activated, Page 1 will not be displayed until
either the P1, P2, or SP command is invoked, or memory is changed with the MM
command., When this occurs, both Page 1 and Page 2 will appear on the screen,
and their displays will remain in evidence until you exit from MicroMind. A
return from a breakpoint will reactivate the page displays, but other reentries
will not.

P2 (Page 2)

P2 is exactly like P1, except that the display is on the bottom line of the
screen. P1 and P2 may be set independently, so that you can keep an eye on two
different regions of memory, which can be extremely helpful in debugging.

4.3, UTILITIES

FN (Find Number)

The FN command allows you to find all occurrences of either a one- or
two-byte number in a block of memory. (This can be especially useful for
finding all program references to a certain address.) After "® FN®, you will be
asked for a "FIRST ADDRESS?". Respond with the starting address of the block of
memory to be searched. When this has been accepted, MicroMind will ask you for
a "FINAL ADDRESS?®. Respond with the last address of the block of memory to be
searched. Then the question "FIND?" will appear. Answer this with the number
that you wish to locate in the specified memory block. (Entry of this number
follows the usual rule for entry of addresses given in Appendix 5.) If you
enter three, four, or five characters here, MicroMind will search for a
two-byte number (or address); if you enter only one or two characters,
MicroMind will search for a one-byte (hex) number. (In the latter case, expect
a lot of matches unless the memory block is small,) The addresses of all
occurrences of your search number in the specified memory block will then be
displayed, four to a line. (For a two-byte search number, the address shown
will be that of the low-order byte.)

After MicroMind has reported all addresses corresponding to your search
number, it will post another "FIND?" query. By entering another number here,
you may continue searching the same block of memory. To exit from FN, press
BREAK.

Page 36

DS (DiSassemble)

The DS command enables you to see instructions in memory (including ROM) in
their 2-80 mnemonics. After "® DS", you will be asked for a "FIRST ADDRESS?".
Respond with the starting address of the program that you wish to disassemble.
The instruction at that address will be disassembled and displayed in the
format explained under the SP command. MicroMind will then pause, awaiting your
next directive. Pressing either the DOWN ARROW or the ENTER key here will cause
the next instruction in memory to be displayed, while pressing the UP ARROW key
will result in the display of the instruction at memory address 10H lower than
that of the next instruction. Either of these actions may be repeated for as
long as you wish, Press the BREAK key to end the DS mode.

NOTE: Not all hex numbers can be decoded as legitimate 2-80 instructions.
For example, the byte ODDH by itself is meaningless -- it requires at least one
following byte to give it meaning. And not all following bytes are legal; DDO1
is not the beginning of any valid Z-80 instruction. When the disassembler
encounters such a combination, it repomts only the first byte (with no
mnemonic) on a 1ine, and then proceeds (as you press DOWN ARROW or ENTER) one
byte at a time until it finds a combination that it can decode. In
disassenmbling data, this type of ambiguity can easily arise. When you have
worked through the data, the MicroMind disassembler will quicky get back into
"sync®, though an instruction or two following the data may be misreported. In
stepping through a program (with SP), the same impasse is possidble, though far
leas likely than in random disassembly. In this unlikely event, MicroMind
treats the unidentifiadble code byte-by-byte -~ turning each byte into a NOP for
execution -- until it can get back into ®sync®.

HD (Hex-to-Decimal conversion)

After "0 HD®, you will be asked for a "HEX#?". Enter any number of not more
than four (hex) digits, completing the entry by pressing ENTER if fewer than
four digits are typed. MicroMind will respond with the decimal equivalent of
that hex number, It will then ask for another "HEX#?. Terminate this mode by
pressing BREAK, (The hex-to-decimal converter of Section 2 is similar to thic
MicroMind routine.)

DH (Decimal-to-Hex conversion)

This conversion works like the HD above, except that now you will enter a
decimal number of up to five digits, and the response will be its hex
equivalent. (In either type of conversion, if MicroMind can't decipher your
input, it will simply ask for it again.)

Page 37

4.4, Symbolic Disassembly and Transfer (Integral MicroMind Onlv)

SD (Symbolic Disassembly)

When you assemble-to-memory a program in Instant Assembler's source buffer
and then use (integral) MicroMind either to step through it or to disassemble
it, you might want to see the disassembled instructions with labels, symbols,
character constants, eto, -- exactly as they would appear in a listing of the
source code, To do so, enter the SD command before beginning to step or
disassemble.

During symbolic disassembly (or stepping), if an instruction is encountered
that does not agree with its counterpart in the source code, the actual
instruction in memory is the one that will be disassembled and displayed. (This
could happen because of a memory change, for instance.)

AD (Absolute Disassembly)

The AD command is used to switch back to normal disassembly after you have
had enough of symbolic disassembly. (You can switch back and forth between the
two as often as you like.) Whenever you enter MicroMind with the MD command
(from the assembler), the absolute disassembly mode will be in effect.

IA (transfer to Instant Assembler)
Use the IA command to transfer control to the assembler subsystem.

4.5. Tepe and Printer Copmands (Stand-Alone MicroMind Onlv)

TP (TaPe)

The TP command allows you to record a 500 baud machine language program (in
SYSTEM format) on cassette tape. You may use it to make an object tape of any
machine language program that is in memory. After you have entered the TP
command, MicroMind will request a "FIRST ADDRESS?". This is the lowest memory
address of the program that you wish to record, and it may be entered in either
decimal or hex. Next, you will be asked for a "FINAL ADDRESS?". Enter the last
memory address of the program to be recorded. You will then be asked for an
"ENTRY ADDRESS?", which is the address at which execution of the machine
language program is to start when later it is loaded with the SYSTEM command.
Finally, MicroMind will request a "TITLE?"; type in any name of six or fewer
characters, (First character must be a letter, subsequent characters either
letters or digits.) Have the tape correctly positioned in the recorder, with
the RECORD and PLAY keys depressed; as soon as you type the title and press
ENTER, the recording will commence.

VF (VeriFy)

The VF command allows you to verify a 500 baud machine language tape that
you have just recorded with the TP command. Rewind the tape to the beginning of
the recorded segment and type "VF" in response to the "®®* prompt. Press the
PLAY key on the recorder, and MicroMind will try to verify the recording. If
anything is wrong, "BAD" will be displayed, and you may re-record the program

Page 38

and try again to verify it. If the recording is all right, "GOOD®" will be
displayed when the verification is complete.

DP (Disassemble and Print)

The DP command allows you to print a disassembled listing of any segment of
2-80 code in ROM or RAM. After entering the DP command, you will be asked for a
®FIRST ADDRESS?® and a "FINAL ADDRESS?*. (These are, of course, the first and
last addresses of the block of code that you wish to disassemble.) Enter these
addreases in either decimal or hex, Have your line printer turned on and ready.
When the FINAL ADDRESS has been entered, printing will commence and will
continue until this address has been reached or exceeded, or until you depress
the BREAK key to stop the operation.

Page 39

SECTION 5, EXAMPLE OF MICROMIND IN ACTION

The goal of this section is to encourage you to become familiar with
MicroMind by practicing its operations on the hex-to-decimal conversion program
that you composed with Instant Assembler in Section 2. To that end, a progranm
of action is described, but detailed instructions for carrying out all of the
steps are not given; refer to the explanations of Section 4 for any required
additional help.

Load and run Instent Assembler. Use the IN command to load the HDCONV/SRC
file that you recorded with the directions of Section 2. Assemble-to-memory
(with the AM command), giving the program an origin of 9000 (which is hex). If
you have a printer, make a listing of the assembled program with the PC
command; this will help in following the steps outlined below. Now transfer to
MicroMind; the command for this is "MD". Enter the SP command and an address of
9000. You are ready to commence stepping through the hex-to-decimal converter.

For a first run, a blank screen will allow you to follow the highlights of
the action., Enter the BD command, and the screen will be cleared except for the
CALL 1C9H instruction displayed at the lower left corner. Press the X key to
execute this subroutine. Then press ENTER three times to step through the
instructions at 9003, 9006, and 9009. Type ®X™ to execute the video output
routine called at 900C, and the program title will appear on the screen. Press
the X key twice more to execute the next two subroutines, which merely move the
screen display line down. Then step through the instruction at 9015, and type
®"X* to execute the next subroutine, which will display the "HEX#?" prompt.
Press the X key again, and the cursor will appear; you are now in the input
routine. Enter a hex number of four digits, and you will be back in MicroMind,
ready to step through the instruction at 901E. Continue stepping -- using the X
key to execute each CALL that you encounter -- until the decimal equivalent of
your hex entry has appeared, and the instruction at 9012 has been fetched
again., (Do not be alarmed if the hex number appears to be converted
incorrectly. MicroMind uses the ROM conversion facility for its own purposes
between the actual hex conversion and its display.)

Press the X key to execute the subroutine called at 9012, and step through
the instruction at 9015. Now, instead of executing the video output routine
called at 9018, press ENTER to step through the CALL, then press the S key to
fast-step until the instruction at 9071 (CALL 33AH) is reached. Use the X key
to execute this subroutine, then fast-step (with the S key) until you return to
9071. Continue in this fashion, using the X key each time you reach the
instruction at 9071. You should see the "HEX#7" query take form on the screen
one character at a time. When this has occurred, press BREAK to return to SP
mode.,

Now enter the SP command again, with an address of 9003. Enter the RN
command, giving a FINAL ADDRESS of 901B. MicroMind will then fast-step (with a
blank screen) until the CALL to the keyboard input routine is fetched, at which
point it will terminate the stepping. During this run you should see the
program title and the "HEX#?" prompt appear slowly on the screen. Use the BREAK
key to return to SP mode.

Before stepping again, enter the SD command so that you can see the labels
and symbols of the fetched instructions. Then enter the SP command once more,
with an address of 9003. Step through the program with full register displays;
use the ENTER key to fetch each instruction, and also to execute it -- unless
it 18 a CALL, in which case use the XC command to execute the subroutine as a
whole. Note that the screen displays of the hex-to-decimal converter will now
flash and be gone; MicroMind needs the screen for its own displays. (Don't be

Page 40

alarmed if there is a bit of residue from the converter display, or if the two
displays are sometimes intermixed.) When you execute the keyboard input routinc
(called by the instruction at 901B), however, you will be able to see your
input until the fourth digit is entered. That is because MicroMind is suspended
while the input subroutine is executing. In stepping with full register
displays, proceed very deliberately, observing how the registers are affected
by each instruction.

It 1s illuminating to step through the program again with a slight
modification along the way. Enter the SP command and an address of 9000.
Execute (XC) the instruction at 9000, and step through the instruction at 9003.
Now use the RG command to change the contents of the HL register pair to 3El4,
Exit from RGC mode with the BREAK key, enter the BD command, and continue
stepping (using the X key to execute all CALLS.) The effect of the register
change is to move the initial display half way down the screen. When you have
observed this, press the BREAK key.

As a final exerciss, use the BK command to set a breakpoint at 90AE. (This
is inside the keyboard input routine.) Then use the JP command to transfer
control to 9000. The hex-to-decimal converter will now execute without external
support. However, as soon as you enter a first character in response to the
"HEX#?" prompt, the breakpoint will take effect, and MicroMind will be in
control again. Now enter the SB command, and you can step through the
processing of this input character. If you want to see how different input
characters are processed, you can reinitialize the SP mode with an address of
90AE, then use the RG command to enter a character directly into the A
register. (You might put zero into the BC register at the same time to avoid
bumping up against the field limit of four characters.) Step from this point,
and you will be able to observe the handling of the character. This last
procedure shows how easy it is to back up -~ or advance -- the stepping process
by simply reinitializing the SP mode; frequently this needs to be accompanied
by use of the RG command to set the registers right for the new starting point.
Be warned, however, that reinitializing SP mode also reinitializes the stack
pointer, so that any data or return address on the stack will be temporarily
lost; if you wish, you can use the RG command to reset the stack pointer to its
previous value,

It should be evident that, in the process of single-stepping through a
program, you will almost surely discover any error that exists. 1If the program
resides in Instant Assembler's source buffer, it is a simple matter to transfer
to Instant Assembler (with "IA®), correct the error in the source code,
assemble-to-memory again, and return to MicroMind (with "MD") to continue
debugging.

Page 41

SECTION 6. INSIDE MICROMIND

Herein i1s a collection of tips on the use of MicroMind.

(1) Stand-alone MicroMind is relocatable. When you run this program from
DOS, the title "RELOCATOR™ is displayed, and you are asked for a "STARTING
ADDRESS?" for the relocation. If you are satisfied with the location of
MicroMind as it 1s loaded from the disk, press the BREAK key; you will then be
in MicroMind. If you want to relocate, enter a suitable starting address, After
the relocation (which takes about four seconds), the relocator will report the
FIRST ADDRESS, the FINAL ADDRESS, and the ENTRY ADDRESS for the relocated
program; these addresses may be used to make a recording of the relocated
program., (This recording can be made with the 00 command of one of the Linking
Loaders. See Section 7 for directions on how to do it.) After these addresses
have been displayed, control is passed to (0ld) MicroMind; you can use the JP
instruction to transfer to the relocated MicroMind. To help you judge whether
to relocate MicroMind, as well as what the starting address should be, the
following information is supplied: Stand-alone MicreMind is about 1100 (hex)
bytes long. As it comes off the disk, it occupies memory from about AF00 (hex)
to exactly BFFF (hex). The relocator will not permit an overlapping relocation,
a relocation below 5200 (hex), or one above FFFF (hex).

(2) A leading zero (or zeroes) is required when entering a decimal address
of less than five digits; otherwise, MicroMind will treat the entry as a
hexadecimal address. Also, when using the FN command to search for a two-byte
hex number whose value is less than 100H, a leading zero will be necessary to
tell MicroMind that it is a two-byte number (rather than a single byte) that
you are searching for; if your two~byte search number is less than 10H, two
leading zeroes will be required. Note that the "H" prefix is never required (or
ever allowed) for hexadecimal numbers.

(3) Each MicroMind query has a strict limit on the number of characters
that can b entered in response. In all cases except for the "TITLE?" query,
when this limit has been reached, the entry is complete, and the subsequent
action is immediately triggered.

(4) The BREAK key allows you to escape from any mode except SP mode. In SP
mode, BREAK merely clears the left side of the screen.

(5) If MicroMind cannot recognize your response to a prompt or query, it
repeats that prompt or query.

(6) MicroMind accepts no space in its input, because none is needed in any
of the formal responses to its queries.

(7) Use of other commands will not confuse the stepping process, MicroMind
will never forget where it is in the stepping process until you do a JP, CL,
IA, SB, or another SP, and exiting from any of the other commands will
automatically return you to where you were in SP mode.

(8) To view all the registers at once, enter the SP command to call up a
full register display. It isn't necessary to do any stepping to use this
feature,

(9) You can't directly inspect the alternate register set. However, there
is no need to know what is in these registers unless your target program first
does an EXX (or EX AF,AF'), and later exchanges registers again. By
stepping through the first exchange, you will know what has been saved in the
alternate registers; MicroMind will not change their contents.

Page 42

(10) You can't easily change the contents of the Add/Subtract or the
Half-Carry flags. By inspecting the AF register (in a full register display),
you can at least ascertain the state of these flags. It is highly unlikely that
you will need to change that statc.

(11) The P! and P2 displays are updated after each use of the MM command to
change menory, and after each EXECUTE cycle in SP mode.

. (12) MicroMind initializes a8 stack for use of the target program; this
stack suffices for nearly all debugging. If your program must set up its own
stack, be sure that it does not employ any memory that would interfere with the
operations of MicroMind or (in the case of integral MicroMind) Instant
Assembler; the same remark applies to any storasge areas that your program may
establish, To avoid contaminating Instant Assembler, do not use any memory
locations below the address given by Instant Assembler in its "1ST FREE MEM"
report when the AM command is exercised.

(13) MicroMind will disassemble the undooumented instructions, which are
defined in item (17) of Section 3.

(13) In entering any command or information, you may use the LEFT ARROW key
to backspace and erase characters.

Page 43

PART IXJ. THE LINKING LOADERS

Linking Loader is a machine language program that will load a module
produced with Instant Assembler into any RAM location outside its own program
and storage areas. It will also load and link multiple modules. (The modules
that Linking Loader operates on are the source code modules recorded with the
0S command of Instant. Assembler.) In addition, Linking Loader can record an
object file of the loaded program.

Linking Loader occupies approximately 3300 bytes at one end of RAM and
requires a certain amount of memory (which is dynamically allocated as needed)
adjacent to its program area for the storage of labels and their values. Object
code is assembled and placed in memory in real time (as the input file is
read), so that no buffer space is required for the code itself. In loading
multiple modules, Linking Loader proceeds from the specified starting point
toward its own storage area. It will stop -~ with an "OUT OF MEM" report -- if
it runs out of room. In a 32K RAM there should be,enough space to load a
multi-segment program of at least 16K bytes; the exact upper limit depends upon
the sizes of the individual modules, the number of cross references between
modules, and even the order in which the modules are loaded.

Linking Loader is supplied in two versions. The Top-Down Loader resides in
low RAM and loads programs into high RAM, while the Bottom-Up Loader occupies
the top of RAM and loads programs into low RAM. As the names suggest, the
Top-Down Loader loads programs downward from a specified top address, and the
Botton-Up Loader loads programs upward from a specified bottom address. The
Top-Down Loader has the file name ®*DSKLLT/CMD"; its entry point is 5800H. Two
files on your program diskette contain copies of the Bottom-Up Loader. The copy
in the file "DSKLLB32/CMD" loads to the top of a 32K RAM and has an entry point
at OBFFBH; the copy in the file "DSKLLB48/CMD"™ loads to the top of & 48K RAM
and has an entry point at OFFFBH.

o L DS

Linking Loader has eight two-letter commands, which are explained in this
section and summarized in Appendix 7. As in Instant Assembler and MicroMind,
entry of the second letter of each command triggers the response. The command
prompt is "¢*, The BREAK key can be used at any time except during input/output
to return to command level.

LD (LoaD and l1ink source modules)

With Lirking Loader running, answer the "¢#® prompt with "LD", Linking
Loader will respond with the legend "LOAD-", After this, the sequences to be
followed differ slightly with the two versions of Linking Loader.

(a) The Top-Down Loader will now announce "LAST FREE MEM: XXXX", where the
XXXX is either the top of memory (if this is the first module to be loaded), or
the last address preceding the last module loaded (if apother module has
already been loaded). You will then be asked for a "FILE NAME?". Respond with
the file name of the module that you want to load next. Linking Loader will
then ask for a "FINAL ADDRESS?". Answer this question with the memory address
of where you want the module to end; pressing ENTER in response to this guery
sets this final address to the default value, which is the value announced in
the “LAST FREE MEM"™ report. In any case, Linking Loader will not accept a final

Page 44

address higher than the default value. After the file name and final addresc
have been entered, the file will be loaded and linked. If the load is error
free, Linking Loader will report *"GCOOD® and then prompt you to load the next
module with the same sequence of messages and queries as for the first module.
On the other hand, if a module fails to load properly, Linking Loader will
report *BAD®" and then prompt you to try again to load this module by repeating
the sequence of messages and queries given above. Any disk read error will also
result in an error message, followed by a prompt to try again. The Top-Down
Loader will load successive modules into successively lower memory areas,
though these areas do not have to be contiguous. (To make them contiguous,
merely press ENTER in response to the "FINAL ADDRESS?®" query for each module
after the first,)

(b) The sequence for the Bottom-Up Loader is similer, but with a few
differences. The report "1ST FREE MEM: XXXX" (instead of ®"LAST FREE MEM: XXXX")
is issued before loading each module after the first; the reported address is
one higher than the last address of the lest module loaded. (No report is
issued for the first module to be loaded.) Next, you will be asked for a "FILE
NAME?"™. After entry of the file name, you will be asked for an "ORIGIN?"
(instead of a "FINAL ADDRESS?"). Answer this question with the memory address
of where you want the module to start; pressing ENTER in response to this query
(for any module after the first) sets the origin to the default value, which is
the value announced in the "1ST FREE MEM" report. In any case, Linking Loader
will not accept an origin lower than the default value. (There is no default
value for the firat module; an origin must be entered for it.) After the file
name and origin have been entered, loading and linking occur as with the
Top-Down Loader; reports on the outcome of the load are also the same as with
the Top-Down Loader. When the module has been successfully loaded, you will be
prompted to load the next module with the sequence of messages and queries
given above. The Bottom-Up Loader will load successive modules into
successively higher memory areas, which need not be contiguous. (To make them.
contiguous, merely press ENTER in response to the ®ORIGIN?" request for each
module after the first.)

With either version of Linking Loader, after you have loaded the last
module, press the BREAK key when the next FILE NAME? is requested. At this
point Linking Loader will report all assembly errors that it discovered. This
error report has the fellowing format:

INT ERRS: 001
EXT UNDEF SYMBS: 002
&IMULT &SRCE

Here, "INT ERRS" (for internal errors) gives the total of all errors
resulting frou undefined nonexternal symbols, relative jumps out of range, and
relative jumps with targets that are labels defined externally (that is, not in
the same modules as the relative jumps). Linking Loader will not try to link a
Jump of the last type even if it is within the allowed range of a relative
Jump. All of these internal errors should have been eliminated before the
wmodules were recorded; they could easily have been found and corrected via the
L1 command.

"EXT UNDEF SYMBS® gives the number of external symbol references that have
no corresponding labels to define them. All these symbols are then listed below
the count, eight to a line. (If 12 or more lines of these symbols are to be
listed, Linking Loader will pause after each 12 lines; press ENTER to continue
the listing.) In the above example, "&MULT* and "&SRCE" should have appeared as

Page 45

labels in some module (or modules), but did not. It is also possible that these
represent misspellings of actual labels, in which case the LE command of
Instant Assembler can be very helpful in tracking them down. In any event, you
will have to correct these errors eventually.

There is one type of error that Linking Loader will not detect, and that is
an external label that appears in more than one module -- a doubly defined
external label. In supplying an address for an instruction that references such
a label, Linking Loader will use the latest defined value -- that is, the value
of the label in the most recently loaded module in which it appears. Thus, an
error of this type may or may not result in an actual error in the assembled
program. Of course, the way to avoid the possibility of a real error of this
type is to use each external label in only one module,

CL (Continue Loading and linking)

Occasionally you may terminate a link-loading operation before it has been
completed. One reason might be to see what external symbols remain undefined at
a particular point in the loading process. Another might be to check on the
values of some external labels that have already been loaded; the SY command,
explained below, can be used for this purpose. When you are ready to continue
loading, enter the CL command. Linking Loader will resume exactly as if there
had been no interruption.

SY (display SYmbol values)

At any time after terminating a load operation, you may use the SY command
to learn the load address of any instruction with an external label. After "¢
SY", you will be asked for a "SYMBOL?". Respond with any external label in the
program that has been loaded. (If you name a nonexternal label, or one that
does not exist in the program, Linking Loader will reply ®"BAD" and ask for the
symbol again.) Linking Loader will report the absolute memory address (in hex)
of the instruction at that label and then ask for another "SYMBOL?". You may
thus learn the memory addresses of as many external labels as you please. When
satisfied, press BREAK to return to command level.

PM (Print a load Map)

The PM command allows you to print the memory addresses of all external
labels in a program that has been loaded. Have the printer turned on and ready.
The external labels and their values will be printed four to a line. This
listing is not in alphadbetic order, though it is in approximately numeric
order. With the Top-Down Loader, the labels will be printed in generally
descending order, while, with the Bottom-Up Loader, they will be printed in.
generally ascending order.

00 (Output Object file to disk)

With the 00 command you can make an object file of a program that you have
loaded and linked with Linking Loader, or record (on disk) any other machine
language program that is in memory. The recorded program is in standard object
format, ready to be loaded and executed from DOS. A program can be recorded in
up to five noncontiguous segments,

Page 46

After "¢ 00", Linking Loader will request a "FILE NAME?®. Respond with the
name you have chosen for the object file. Linking Loader will then say “SEGMENT
1:" and follow this with a rcquest for a "FIRST ADDRESS?®. This is the lowest
address of the program that you wish to record, and it may be entered in either
decimal or hex (as explained in Appendix 5). There is also a default option
avajlable for this address: If you are recording a program that you have just
loaded with Linking Loader, you may press ENTER in response to the *FIRST
ADDRESS?" query, and the correct beginning address will be automatically
supplied. Next, Linking Loader will request a *FINAL ADDRESS?". This is the
last memory address of the first (perhaps only) segment of the program to be
recorded, and it may be entered in either decimal or hex. Again, there is a
default option for this address: If you are recording a program that you have
Just loaded with Linking Loader, you may press ENTER in response to the "FINAL
ADDRESS?®* query, and the end address (for the complete program) will be
automatically supplied. (If you are recording the progras in several segments,
do not use this default option.) After the first and final addresses have been
entered, Linking Loader will ask for an “ENTRY ADDRESS?%", which is the address
at which execution of the machine language program is to start when later it is
called from DOS. An address must be entered here (in either decimal or hex)
even if it is meaningless.

After the addresses for Segment 1 have been entered, Linking Loader will
ask for first and final addresses for Segment 2, 8Segment 3, Segment i, Segment
5. To terminate this request sequence, press ENTER in response to the ®*FIRST
ADDRESS?" query for any segment after the first. When all segment addresses
have been entered. DOS will be asked to open the file. Depending upon the
outcome of this request, Linking Loader will report *NEW FILE.® (followed by
transfer of the object code to disk) or *FILE REWRITE. PROCEED (Y/N)?® (which
means that a file with this name already exists). In the latter case you then
have a choice of continuing or aborting the operation.

If you change any of Instant Assembler's program parameters (using the
information in Appendix 6) and wish to record the modified program, use the 00
command of the Bottom-Up Loader. The FIRST ADDRESS for this recording is 5B00
(hex). The FINAL ADDRESS can be found by looking into memory locations
SBO6H-5BOTH when Instant Assembler is in memory. (Remember that SBOTH contains
the high-order byte of this address.) The ENTRY ADDRESS is also 5B00 (hex). Use
only one segment for the recording.

The 00 command may also be used to record a relocated version of
stand-alond MicroMind., The addresses for this recording are displayed by the
relocator at the time of the relocation. If MicroMind is relocated to high RAF,
use the Top-Down Loader for the recording; if MicroMind is relocated to low
RAM, use the Bottom-Up Loader.

TP (record object code on TaPe)

With the TP command you can make a 500 baud object tape of a program that
you have loaded and linked with Linking Loader, or record (on tape) any other
machine language program that is in memory. The recorded program is in standard
object format, ready to be loaded and executed with the SYSTEM command of Level
11, A program can be recorded in up to five noncontiguous segments,

After "§ TP¥, Linking Loader will ask for a "TITLE?"; type in any name of
six or fewer characters. Following this entry, Linking Loader will request
addresses for the program segments exactly as explained under the 00 command
above. After all addresses have been entered, recording will commence. Have the
cassette recorder turned on, with the PLAY and RECORD keys depressed.

Page 47

VF (VeriFy an object tape)
The VF command allows you to verify a 500 baud machine language tape that

you have just recorded with the TP command. Rewind the tape to the beginning of
the recorded program and type "VF® in response to the *¢#" prompt. Linking
Loader will immediately try to verify the recording, so press the PLAY key on
the recorder. If anything is wrong, ®BAD®" will be displayed, and you may adjust
the volume ocontrol or re-record the program and try again to verify it. If the
recording is all right, ®GOOD®" will be displayed when the verification is

complete.

JP (JumP)
The JP command permits transfer of control to any point in memory. After

you have entered this command, you will be asked for an "ADDRESS?®., Enter this
in either decimal or hex, and the jump will be taken to that address.

Page 48

RECTION 8, EXAMPLE OF LANKING LOADER IN ACTION

In this final section you will use the two versions of Linking Loader to
load and link the three-segment hex-to-decimal conversion program that you
constructed in Section 2. The first part of that program calls subroutines in
each of the other two parts; thus, Linking Loader will need to determine the
addresses of those subroutines as it loads them and then plug those addresses
into the calling instructions of Part 1 of the program.

Load and run the Top-Down Loader. Enter the LD conmand and type in
"HDCNV3/SRC® in answer to the "FILE NAME?* query. For a FINAL ADDRESS, enter
90D1. (Be sure the diskette with the hex-to-decimal converter source files is
mounted.) Part 3 will then be loaded, and Linking Loader will request another
file name. Respond with "HDCNV2/SRC®, and press ENTER in answer to the "FINAL
ADDRESS?® query. Part 2 will then be loaded, and Linking Loader will request
another file name. Respond with "HDCNV1/SRC®, and press ENTER in answer to the
SFINAL ADDRESS?" query. Part 1 will then be loaded and linked. (The three
modules will be loaded contiguously because you used the ENTER key to enter
default final addresses for Parts 2 and 1.) Now press the BREAK key when
Linking Loader asks for another file name. The error report that appears should
show no errors. Enter the SY command, and type ®"&BEGIN". Linking Loader will
then announce the memory address of the first instruction of the hex-to-decimal
converter; this address should be 9000. You now see the reason for using an
external label at the entry point of the converter; although &BEGIN is not
referenced by either Part 2 or Part 3 of the program, it may be referenced by
the Linking Loader. Linking Loader cannot give you the value of any nonexternal
label. Now press BREAK to return to command level. If you wish, you may use the
PM command to print a load map of your hex-to-decimal converter.

Enter the JP command, and transfer control to the converter (JP to 9000).
After satisfying yourself that the program has been properly loaded and linked,
use the CLEAR key to return to DOS.

The program that you have just loaded could have been located in any region
of memory above the Top-Down Loader; you might wish to reload it into another
area. (You could even load the three parts noncontiguously, by entering actual
FINAL ADDRESSES for all three parts during the loading.) Also, the three
modules can be loaded in any order; you might want to repeat the
linkage-loading procedure with a different order of loading. However, it is
frequently true in top-down loading that one module defines the end of a
storage area of indeterminate size that lies delow the program area; in such a
case, care must be exercised to insure that this module is the last one loaded.
There are also circumstances in which one particular module must be the first
one loaded. The main fact to keep in mind is that -- in top-down loading --
successive modules are loaded into successively lower regions of memory. (It
does not follow, though, that a single module is loaded from higher to lower
addresses; indeed, the reverse is true.)

Now is the time to load and run the Bottom-Up Loader. Enter the LD command,
followed by a FILE NAME of “HDCNVi/SRC". Give an ORIGIN of 9000. After Part 1
has been loaded, load Parts 2 and 3. (Any other order would work as well,)
Terminate the loading process with the BREAK key. Again the error report should
show no errors. Use the SY command to learn the entry point address (the value
of &BEGIN). Transfer to this entry point with the JP command, and finally
return to DOS (from the converter) by pressing the CLEAR key.

In bottom-up loading, successive modules are loaded into successively
higher memory locations; keep this fact in mind if the succesaful operation of
the total program is dependent upon the relative positions of the segments in

Page 49

memory. it should also be clear that, the lower you set the origin for the
load, the more memory space there will be for the program that you are loading.

Page 50

APPENDIX 1, LEGAL_ INS nu_c:mn_s_wwu

ADC A,s DINZ e nn D R,A PUSH IX
ADC HL,ss El JR C,e LD r,m PUSH IY
ADD A,s EQU n3 JR NC, e LD ryn PUSH qq
ADD HL,ss EX (SP),HL JR NZ2,e LD SP,HL RES b,m
ADD IX,pp EX (SP),IX JR 2,e LD SP,1X . RET
ADD 1Y¥,rr EX (SP),1Y JR e LD SP, IY RET ce
AND s EX AF,AF? LD (BC),A LD ss,(nn) RETI
BIT b,m EX DE,HL LD (DE),A LD ss,nn RETN
CALL cc,nn EXX LD (HL),n LD u,x RL o
CALL an HALT LD (HL),r LD x,n RLA
CCF IMO LD (IX+d),n LD x,u RLC m
CP s IM 1 LD (IXed),r LD x,x* RLCA
cP IM 2 LD (IY+d),n LDD RLD
CPDR IN A, n2 LD (IY+d),r LDDR RR m
CPI IN r,(C) LD (nn),A LDI RRA
CPIR INC IX LD (nn),IX LDIR RRC m
CPL INC IY LD (nn),IY NEG RRCA
DAA INC LD (nn),ss NOP RRD
DEC IX INC ss LD A,(BC) OR s RST p
DEC 1Y INC x LD A,(DE) OTDR SBC A,s
DEC m IND LD A, 1 OTIR SBC HL,ss
DEC ss INDR LD A,(nn) ouT (C),r SCF
DEC x INI LD A,R OUT n2,A SET b,m
DEFB n INIR LD I,A OUTD SLAnm
DEFM ‘cs? JP (HL) LD IX,(nn) OUTI SRA m
DEFS n1 JP (IX) LD IX,nn POP IX SRL o
DEFW nn JP (1Y) LD IY,(nn) POP IY SUB s
DI JP ce,nn LD IY,nn POP qq XOR s
Operand Notation

b represents a number in the range of 0 to 7.

d repesents a one-byte number in the range of -128 to 127.

e represents a symbolic address within relative range (-126 to 129).

n represents any one=byte number or character constant.

n!1 represents a number in the range of 1 to 4095.

n2 represents a number in the range of 0 to 255.

n3 represents a number in the range of 0 to 65535.

p represents one of the following: 0, 8, 10H, 18H,

r represents any cf the following registers: A, B,

o represents either r, (HL), (IX+d), or (IY+d).

u represents any of the following registers: A, B,

x represents any of the half-index registers: IXH, IXL, IYH, IYL.

x' represents any of the half-index registers IXH, IXL, IYH, IYL, with
the restriction that x and x' must be halves of the same register.

s represents either r, n, (HL), (IXed), (IY+d), or x.

nn represents a two-byte number or address; it may be a symbol.

¢s represents an ASCII string of not more than 43 characters.

cc represents any of these conditions: N2, Z, NC, C, PO, PE,

pp represents any of these 16-bit registers: BC, DE, IX, SP.

qQq represents any of these 16-bit registers: AF, BC, DE, HL.

rr represents any of these 16-~bit registers: BC, DE, 1Y, SP.

ss represents any of these 16-bit registers: BC, DE, HL, SP.

20H, 28H, 30H, 38H,
¢, b, E, H, L.

c, D, E.

P, M.

Page 51

APPENDIX 2., SUMMARY OF ASSEMBLER COMMANDS

COMPOSING AND EDITING
CP -- ComPose source code
ED -~ EDit lines of source code
CC == Continue Composing

INSERTING, DELETING, MOVING
IS «= InSert lines of source code
DL -- Delete one Line of source code
DM -~ Delete Multiple lines of source code
MB -- Move a Block of source code

LISTING
LC -- List Completely (to the screen)
PC -~ Print a Complete listing
LL -= List to the Last line (from a specified starting line)
PL -= Print (a listing) to the Last 1line
PR == Print a Range of lines
LI == List Internal errors
PI -- Print Internal errors
LE == List External undefined symbols
PE -~ Print External undefined symbols
LS == List the Symbol table
PS == Print the Symbol table

TAPE INPUT/OUTPUT
WS == Write Source code to tape
VS == Verify Source code
RS =~ Read Source code from tape
WO ==~ Urite Object code to tape
WE == Write Edtasm source code to tape
RE -- Read Edtasm source, translate, and merge

DISK INPUT/OUTPUT
0S -- Output Source code to disk
IN == INput source code from disk
MG -- MerGe source code from disk
00 == Output Object code to disk
OE == Output Edtasm source code to disk
IE == Input Edtasm source, translate, and merge

MISCELLANEOUS
AM ~= Assembl e-to-Memory
RO -- Reset Origin
FR =~ Find all References to a specified symbol
Dl -~ DIrectory display
KL -~ KilL a file
EX -= EXit to DOS
MD == transfer to microMinD

Page 52

APFPENDIX 3., SQURCE CODE ENTRY

EXAMPLES: (Numbers in parentheses below examples refer to the notes.)
(a) Instruction line:

0045 &ENT2 LD A, (HL) 3GET CHARACTER
(1) (2) (3)(u)(3) (5) (6) () (&)

(b) Comment line:

0123 ;The next routine converts numeric input.

(V) (D (8)
NOTES:

(1) Four-digit line number and following space are provided by Instant
Assenmbler,

(2) Label is optional and is limited to six alphanumeric characters, except
that the first character may be an ampersand to indicate an external label. (If
first character entered is a semicolon, line will be converted to a comment
1line.)

(3) Tab (RIGHT ARROW) to the next field.

(4) Opcode is mandatory for standard line and is limited to four alphabetic
characters,

(5) Enter necessary operand or operands in this field. If two operands are
required, separate them with a comma. Do not use spaces in the operands (except
for a character constant).

(6) Spaces preceding the on-line comment are optional.

(7) The semicolon is required to indicate that a comment:follows. Note that
in a comment line the starting semicolon cannot be erased except by use of
SHIFT-LEFT ARROW.

(8) Comments are free form. Lower case may be used in the lodel III. No
on=-1ine comment is permitted following a DEFM pseudo-instruction.

COMPLETION MODES:

SHIFT-LEFT ARROW -~ erase this line and start fresh with the same
line number.

BREAK -~ abort this line and return to command level.

ENTER -~ normal end of line; 1line is checked and (if
error-free) entered into source buffer,

Page 53

APPENDIX 4, EDITING PROCEDUKES

The ED, LI, and FR commands provide direct editing facilities. The CP, CC,
and 1S commands permit editing while entering a line; they also lead to editing
if the entered line has a detectable error.,

LINE LEVEL:

ED command only:

UP ARROW -- Display previous line.

D -- Delete displayed line.

I == Insert new line before displayed line.
ED, LI, FR commands:

DOWN ARROW -~ Display next line.

ENTER -= Same as DOWN ARROW.

Cc -=- Descend to cursor level to edit line.

CURSOR LEVEL (ED, LI, FR, CP, CC, 1S):

SPACE -~ Move cursor right one space without erasing.

LEFT ARROW -=- love cursor left one space without erasing.

RIGHT ARROW == Tab to next field; if that field is empty,
descend to edit level, X mode.

SHIFT=-D -=- Delete character at the cursor.

SHIFT-1 -=- Descend to edit level to insert characters.

SHIFT-C -- Descend to edit level to change characters.

SHIFT-H -~ Delete characters to end of field; deacend
to edit level to enter characters.

SHIFT=-X -= Tab to end of field; descend to edit 1level

to enter characters
SHIFT-LEFT ARROW -- Erase entire line and start over.
ENTER -~ Normal termination of editing.
BREAK -- Same as ENTER, if used with ED, LI, or FR.
Abort, if used with CP, CC, or IS.
A one- or two-digit number (n) typed just defore SPACE, LEFT ARROW, or
SHIFT-D extends the effect of each key over n characters.

EDIT LEVEL (ED, LI, FR, CP, CC, 1S):
A character typed at this level is entered into the source line, provided
that it is legal for the field of entry.

LEFT ARROW -~ Backspace without erasing in I or C mode.
Backspace and erase in H or X mode.
RIGHT ARROW -- Tab to next field; if that field is not

empty, return to cursor level,
DOWN ARROW or SHIFT-UP ARROW -~ Return to cursor level.
SHIFT-LEFT ARROW, ENTER, or BREAK -- All have the same effect at
edit level as they have at cursor level.

Page 54

LINE NUMBERS:

(1) Decimal: Enter four or fewer decimal digits.

(2) Label plus offsct: Enter the labe)l of any line in the program. This
label may also have a decimal offset in the range of =31 to +99.

(3) Current line: Enter "." (period) to request the current line. Type UP
ARROW to request the line preceding the current line. Type DOWN ARROW to
request the line following the current line.

How the current line number is maintained:

(a) It is initialized at 1 when Instant Assembler is loaded.

(b) Whenever source code is displayed on the screen, the current line
pointer is updated to the number of the last displayed line. Exception: Wher a
line that is being entered (with the CP, CC, or IS command) is aborted with the
BREAK key, the current line pointer is not updated to the number of that line.

(c) When the CC command is entered, the current line pointer is set to the
number of the last line in the source buffer.

(d) Use of the UP ARROW to enter a line number not only selects the line
before the current line, but also resets the current line pointer to the number
of the selected line. Similarly for DOWN ARROM.

(e) Printing and block movement havé no effect on the current line.

ADDRESSES:

(1) Héxadecimal: Enter four or fewer hex digits. Do not type a zero before a
leading A, B, C, D, E, or F. Do not type "H®" at the end of the entry. (NOTE:
This rule is for addresses entered in answer to a query; hex numbers entered in
source code must have both the leading zero and the terminating H.)

(2) Decimal: Enter five (no fewer) decimal digits. If necessary, pad with
leading zeroes to make the total of five digits.

ORIGINS AND ENTRY ADDRESSES:

Besides the two methods given above for all addresses, origins and entry
addresses for Instant Assembler can be entered as default values by simply
pressing ENTER. The default value is the last origin set with the RO command,
which is also the origin that appcars when the program is listed with the LC
command,

Page 55

APPENDIX 6. PARAMETER JOCATIONS AND. MEANINGS

SAFEH - SAFFH (Top of memory) Computed whenever Instant Assembler is entered
at 5SBOOH. You may set this value to protect other programs in high RAH.
Subsequently, use the reenttry point at SBO3H to avoid destroying the
protection,

Changes in any of the parameters below may be made permanent by using the
Bottom-Up Linking Loader to record the modified Instant Assembler, as detailed
under the 00 command of Section 7.

SBO8H (Directory option flag) Comes set at zero for Model III TRS-DOS. Set
to 1 for NEWDOS 80 or Model III LDOS 5.1. Set to 2 for DOSPLUS 3.4.

SBO9H (Number of spaces of indentation in printed listings) Comes set at 8.
If you set bit 7 (the 80H bit) of this number, you can obtain source-only
listings. These listings will use 18 fewer print columns than the nucber you
put in 5BOAH.

SBOAH (Number of print columns) Comes set at 72; must be set at a numbdber
from 64 to 98, or to 105. (A setting of 105 guarantees that no instruction will
take more than a single line.) This number plus the number in 5BO9H should not
exceed the column capacity of your printer. (Exception: If bit 7 of location
5BO9H is set, the sum of these two numbers can be up to 18 greater than your
printer's column limit.)

5BOBH (Number of printed lines per page of listing) Comes set at 59.

SBOCH (Total number of lines per page) Comes set at 66. If this number is
greater than the number in SBOBH, the difference will be the number of copies
of the character in SBODH transmitted at the end of each page. If S5SBOCH is set
to 1, only one copy of the character in 5BODH will be sent after each page.

SBODH (Line feed or form feed character) Comes set at OAH, which is normally
sent several times at the end of each page. If you change 5BOCH to 1, put a
form feed in SBODH.

SBOEH (Carriage return character or flag) Comes set at ODH, which is
transmitted at the end of each line. If 5BO9H - SBOAH are jointly set to
transmit full lines to your printer, and if your printer doesn't require a
carriage return in this case, then store a zero in SBOEH. A zero here will not
be transmitted.

SBOFH - SB14H (Custom print formatting bytes) Come set at all zeroes. Any
characters you store here (up to the first zero byte, which will not be
transmitted) will be sent to your printer at the start of each line. Thus, you
can program compressed format, double strike, eto., if your printer permits.

SB15H (EDTASM source format flag) Comes set at 1 for recording six spaces at
the beginning of an EDTASM source file. Set to 0 to suppress this dummy title.

Page 56

APPENDIX 7, SUMMARY OF MICROMIND AND LINKING LOADER COMMANDS

MICROMIND
STEPPING, BREAKPOINTING, AND EXECUTING
SP =~ SteP XC «~ eXeCute
BD -« Blank Display RN -~ RuN
BK -~ BreaKpoint RB -~ Restore Breakpoint
SB -= Step from Breakpoint JP == JumP
CL == Call

REGISTER AND MEMORY DISPLAY
RG -~ ReGister display and change MM -~ MeMory display and change

AS == AScii display P1 -~ Page 1
P2 -- Page 2
UTILITIES
FN == Find Number DS -~ DiSassemble
HD == Hex-to-Decimal conversion DH =~ Decimal-to-Hex conversion

SYMBOLIC DISASSEMBLY AND TRANSFER (Integral MicroMind Only)
SD -~ Symbolic Disassembly AD -« Absolute Disassembly
IA == transfer to Instant Assembler

TAPE AND PRINTER COMMANDS (Stand-Alone MicroMind Only)
TP ~- TaPe VF «- VeriFy
DP -~ Disassemble and Print
LINKING LOADER

LD == LoaD and 1link source modules CL =-- Continue Loading and linking

SY -~ display SYmbol values PM -~ Print a load Map
00 == Output Object file to disk TP ==~ record object code on TaPe
VF -- VeriFy an object tape JP == JumP

Page S7

APPENDIX 8, ADAPTING TO EDTASM

Since some of EDTASM's constructions are not recognized by Instant
Assembler, you may need to make some adaptations when copying programs from
magazines, because these generally assume the use of EDTASM. The key to success
is to'understand the function of each line of code that you are transcribing; a
functionally equivalent Instant Assembler form is nearly always available. Some
suggestions for these conversions have already been made in Section 3, items
11, 12, 13. In this appendix are more suggestions, illustrated by examples
culled from the pages of "80 MicroComputing" magazine. You may notice that many
of these examples are awkward constructions even in EDTASM.

(1) The first set of suggestions concerns the use of the symbol "$* to mean
the address of the present instruction. Here are some examples:

(1a) JR NZ, $+6
SUGGESTION: Put a label -- say "HERE® -- on the instruction at $+6, then change
the above line to JR NZ,HERE. To figure out where-.$+6 1is, you will need to
count the bytes of each instruction; start with the JR N2,$+6, which counts
for two bytes. After you have counted six bytes worth of instructions, put the
label on the next instruction.

(1B) DINZ §
SUGGESTION: Change this to TITELP DJNZ TITELP.
(1C) NOTU EQU §

cp 2AH

SUGGESTION: Replace these two lines with NOTU CP 2AH. The only purpose
served by the EQU here 1s to attach the label to the instruction in the line
ollowing; this can be done directly as suggested.

(1D) BOARDS DEFL §

END
SUGGESTION: Use BOARDS DEFS 1 4instead. (Instant Assembler doesn't want the
END instruction.) In the actual program, BOARDS was a label defining the
beginning of a storage area.

(1E) SET 0,(HL)
OPCODE EQU $-1
SUGGESTION: Use the following two lines instead:

DEFB OCBH ;1st byte of SET 0,(HL)
OPCODE DEFB O0C6H ;2nd byte
(1F) ORG OFFOOH
DISKIO EQU §
END

SUGGESTION: Use DISKIO EQU OFFOOH instead.

(16) GETCHR CALL $-$
SUGGESTION: Use GETCHR CALL O 1instead, since the value of $-$ is zero.

Page 58

(2) The second set of suggestions concerns the use of arithmetic operators
within operands. EDTASM is lidberal in its acceptance of these, while Instant
Assembler is not. Here are some examples:

(24) XOR 128464
SUGGESTION: Use XOR 192 4instead.

(2B) LD IX,3C3FH=40H
SUGGESTION: Use LD 1IX,3BFFH. Figure out the arithmetic yourself.

(2¢) LD (IX+256-63) ,A

SUGGESTION: Use LD (IX-63),A instead. Here we see a minor flaw of EDTASHM,
which will not accept LD (IX-63),A, though that is the intent of the example
instruction. Index register offsets for EDTASM must be in the range of 0 to
255; a negative offset has to be adjusted by adding 256 to it so that EDTASM
will accept it. Instant Assembler does this the right way.

(2D) LD (IX+OFFH) ,A
SUGGESTION: Use LD (IX-1),A instead, which is the correct form, See (2C)
above,

(2E) LD HL, CARDIM-36
SUGGESTION: Use the following lines instead:
LD HL, CARDIM

PUSH BC

LD BC,~36
ADD HL,BC
POP BC

This makes the program six dbytes longer, which may have to be taken into
account when assigning the origin. Be aware that changing the length and origin
of a published program can also affect entry point and satorage area addresses.

(2F) LD BC, TRCTBE-TRCTAB~-1
SUGGESTION: Use the following lines instead:
PUSH HL

LD HL, TRCTBE~1
LD BC, TRCTAB

OR A
SBC HL,BC
LD B,H
LD C,L
POP HL

Again, this makes the program 10 bytes longer, which may have to be taken into
account when assigning the origin.

(2G) LD HL,VIDEO+982
SUGGESTION: Use the following lines instead:
LD HL,VIDEO

PUSH BC
LD BC,982
ADD HL,BC
POP BC

Page 59

Six bytes are added to the code, which may have to be taken into account when
assigning the origin. In this particular example, VIDEO was EQUated to 3COOH,
30 you could also have used the simple replacement line LD HL,3FD6H.

(2H) ADD A,BUFFER¢-8
SUGGESTION: Use the following 1fnes instead:
PUSH. BC
LD BC, BUFFER

ADD A,B
POP BC

Once again, four bytes are added to the code, which may have to be taken into
account when assigning the origin. In this particular example, BUFFER was
EQUated to 6000H, so you could also have used the simple replacement line ADD
A,60H.

(3) The third set of suggestions concerns minor variations in the form of
operands, Here are some examples:

(34) LD (DCB+0AH) , HL
SUGGESTION: Use LD (DCB+10),HL instead. Instant Assembler requires symbol
offsets to be in decimal.

(3B) IN A, (OEEH)

OUT (OEEH),A
SUGGESTION: Use IN A,0EEH and OUT OEEH,A 4instead. Instant Assembler
requires the omission of the parentheses in these two instructions.

(3C) JEHMN2: LD HL, START
SUGGESTION: Use JEHMN2 LD HL,START instead. Instant Assembler does not
permit the colon in the label field.

(4) The fourth set of suggestions concerns the use of the DEFL pseudo-op
and an EQU with a symbolic operand. Here are some examples:

(44) DCB DEFS 32H
EOF EQU DCB+8
ERN EQU DCB+12
NRN EQU DCB+10
SUGGESTION: Use the following lines instead:
DCB DEFS 8
EOF DEFS 2
NRN DEFS 2
ERN DEFS 38
This gives a total defined storage of 50 bytes and preserves the spacing of the
labels.

(4B) DSPDIR DEFL A4419H
SUGGESTION: Use DSPDIR EQU M4419H instead.

(4c) FBUF DEFL 5200H

START DEFL FBUF+32H
FINISH DEFL START«2

Page 60

SUGGESTION: Use the following lines instead:
FBUF EQU s200l)
START EQU 5232H
FINISH EQU 5234l

(5) The fifth set of suggestions concerns the use of symbols to represent
8-bit (or smaller) operands. Here are some exanples:

(54) DEFB CR

SUGGESTION: Use DEFB ODH instead, since CR (for ®carriage return®) had the
value ODH in this example. (The value of the symbol can be determined from the
program listing; it is disprayed to the left of the instruction.)

(58B) SET FLAG,(HL)
SUGGESTION: Use SET n,(HL) 1instead, where n is the actual value of FLAG,
which is an EQUated symbol.

(5C) OUT (PORT1),A

SUGGESTION: Use the following lines instead:
DEFB OD3H ;OUT instruction
DEFW PORTH ; Port number

This coding lengthens the program by one byte, which is a NOP corresponding to
the zero in the high order byte of the value of PORT1. Another solution is to
EQUate a two byte symbol to the entire instruction:

ouUTP1 EQU 05D3R $OUT PORT S
The high order byte of OUTP1 is the port number (05) and the low order byte is
the OUT instruction (D3). When you want to use this instruction in your progran
use OUTP1 as a DEFW:

DEFW OUTP1 sOUT (PORT1),A

This coding does not lengthen the program.

(6) The sixth set of suggestions concerns the use of multiple origins. One
way to circumvent this difficulty is to construct the program in multiple (up
to 5) segments and then load, link, and record it with Linking Loader (which
permits up to five origins in the recording of the object code). This might
require making some labels external so that they can be referenced by other
modules, Another solution to the multiple origins problem applies when the
segments are nearly contiguous: Place appropriate amounts of storage (using the
DEFS pseudo-op) between segments, thus turning the whole into a single block of
code, A third solution may be feasible when some of the segments contain only a
Jump instruction. Here are some examples:

(6a) ORG 16804-1
JP LINE
ORG 16762=-1
Jp FIELD

Page 61

SUGGESTION: Instead of these lines, add the following code to the beginning of
the actual program:
A,0C3H

LD (16803) ,A

LD (16761) ,A

LD HL, LINE

LD (16804) ,HL

LD HL,FIELD

LD (16762) ,HL
This will make the program longer, of course.

(6B) ORG 41E2H

JP AUTO
SUGGESTION: Put this in a separate module and use Linking Loader to link and
record the total program. The reason for a different treatment here is that the
lines shown have a special effect in a Model III tape machine. They cause
auto-execution of the assembly language program when it is loaded using the
SYSTEM command.

(6C) START EQU TEAOH
ORG START=10
LD HL,START
LD (418FH) ,HL
JpP 66H
ORG START
START CALL 1C9H
SUGGESTION: Replace this mess with the following lines:
LD HL, START
LD (418FH) ,HL
JP 66H
START CALL 1C9H
To give START the value 7EAOH, use an origin of TE97H.

Page 62

JINDEX

Topics in this index are referred to not by page number, but by section
number and, usually, either a command name or an item number (or both) within
the section. The specification "(intro)" refers to the introductory paragraph
(or paragraphs) of a section or part. EXAMPLES: 1.1 (CP, item 4) refers to the
fourth numbered item under the CP command in Section 1.1, while Part II1I
(intro) refers to the introductory paragraphs of Part Il1I. Besides making it
easier to avoid errors in the index, this manner of reference generally
pinpoints an item to within less than a printed page.

Alternate registers: 6 (item 9)
Ampersand: 1.1 (CP, item 1), 1.3 (LI), 3 (item 10), Appendix 3 (Note 2)
Assembly-to-memory: 1.6 (AM)

Backspace (LEFT ARROW): 1.1 (CP, items 1 and 4), 1.1 (ED), 6 (item 14),
Appendix 4

Block movement: 1.2 (MB)

BREAK: 1.1 (CP, item 15), 1.1 (ED), 1.2 (18), 1.3 (intro, LI),
1.4 (intro, RE), 1.5 (intro, MG), 1.6 (FR), 3 (items 1, 5, 14),
4 (intro), 4.1 (SP, BD, RN, JP), 4.2 (RG, MM, AS, P1),
4.3 (FN, DS, HD), 4.5 (DP), 6 (item &), 7 (4ntro, LD, SY),
Appendix 3, Appendix 4, Appendix S

Breakpoints: 4.1 (BK, RB, SB)

Cancel (I, C, H, or X mode): 1.1 (ED), Appendix 4

Character constants: 1.1 (CP, item 8)

Change character: 1.1 (ED), Appendix 4 directory option: Appendix 6
EDTASM source format: Appendix 6 line: 1.1 (ED), Appendix 4
memory: 4.2 (MM) origin: 1.1 (CP, item 5), 1.6 (RO)
print parameter: Appendix 6 register: 4.2 (RG)
top of memory: Appendix 6

C mode: 1.1 (ED), Appendix U

CODE ERASURE warning: 1.1 (CP), 1.4 (RS, RE), 1.5 (IN), 3 (item 14)

Command summaries: Appendix 2, Appendix 7

Conments full line: 1.1 (CP, item 4), Appendix 3

on-line: 1.1 (CP, items 2, 3), Appendix 3

Conversions: 4.3 (HD, DH)

Current line: 1.1 (ED, CC), 1.2 (MB), 1.3 (intro), Appendix 5

Default addresses: 1.4 (W0), 7 (LD, 00), Appendix 5
Deletion character: 1.1 (ED), Appendix 4
line: 1.1 (ED), 1.2 (DL, DM), Appendix 4
Directory call: 1.6 (DI)
Disassembly absolute: 4.4 (AD) of undocumented instructions: 6 (item 13)
printed: 4.5 (DP) symbolic: 4.4 (SD)
Displays ASCII: 4.2 (AS) memory: 4,2 (MM)
page: 4.2 (P1, P2), 6 (item 11)
register: 4.1 (SP, CL), 4.2 (RG, MM), 6 (item 8)
Doubly defined label: 1.1 (CP, item 16), 3 (items 6, 10), 7 (LD)
DOWN ARROW key: 1.1 (ED), 1.3 (intro, LI), 1.6 (FR), 4.2 (MM, AS, P1),
4.3 (DS), Appendix U, Appendix 5

Page 63

Editing procedure: 1.1 (ED), Appendix 4
EDTASM adaptations and conversions: Appendix 8
EDTASM facilities: 1.4 (WE, RE), 1.5 (OE, IE), Appendix 6
END: 1.1 (CP, item 5), 1.3 (LC)
Entry of addresses: 1.4 (W0), 4.1 (SP), Appendix 5
of commands: 1 (intro), 4 (intro), T (intro)
of DEFB, DEFW, DEFM, DEFS: 1.1 (CP, item 9)
of line numbers: 1.1 (ED), Appendix S
of source code: 1.1 (CP, CC), Appendix 3
Entry points Instant Assembler: 3 (item 19), 7 (00)
Linking Loaders: Part III1 (intro)
Erasure of line (SHIFT-LEFT ARROW): 1.1 (CP, items 4, 14),
1.4 (RE), 1.5 (MG),
Appendix 4
Error messages composed line: 1.1 (CP, item 16)
in link-loading: 7 (LD)
in listings: 1.3 (LC, LI)
Exeocution of subroutines: 4.1 (XC, BD, CL)

1.1 (ED)O
Appendix 3,

External label: 1.1 (CP, item 1), 1.3 (LI, LE), 3 (item 10), Appendix 3

Fast-stepping: 4.1 (SP, BD, RN)
FILE REWRITE warning: 1.5 (0S, 00, OE), 7 (00)

Find numbers in memory: 4.3 (FN) symbol references: 1.6 (FR)

symbol values: 7 (SY)
1ST FREE MEM report: 1.6 (AM), 7 (LD)
Flags: 4.1 (SP), 4.2 (RG), 6 (item 10)

H mode: 1.1 (ED), Appendix 4

I mode: 1.1 (ED), Appendix 4

Implicit line numbering: 3 (item 2)

Insertion character: 1.1 (ED), Appendix 4
1ine: 1.1 (ED), 1.2 (IS), Appendix 4

Internal errors: 1.3 (LI, PI), 7 (LD)

Killing files: 1.6 (KL)

Label as substitute for line number: 1.1 (ED), Appendix 5

Label field: 1.1 (CP, item 1), Appendix 3

LAST FREE MEM report: 7 (LD)

Levels in editing (line, cursor, edit): 1.1 (ED), 1.3 (LI),

Appendix 4

Listing control of: 1.3 (intro) format: 1.3 (intro)
of numeric constants: 3 (item 7)

Load map: 7 (PM)

Lower case (Model III): 1.1 (CP, items 2, 11), Appendix 3

Merging source files: 1,4 (RE), 1.5 (MG, IE)

NEW FILE report: 1.5 (0S, 00, OE), 7 (00)
NO CODE report: 3 (item 9)

Page 64

1.6 (FR),

Object code, recording of: 1.4 (W0), 1.5 (00), 4.5 (TP), 7 (00, TP)

Cffsets index register: 1.1 (CP, item 7) label: 1.1 (ED), Appendix 5
symbol: 1.1 (CP, item 6)

Opcode field: 1.1 (CP, item 1), Appendix 3

Operand field: 1.1 (CP, item 1), Appendix 3

ORG: 1.1 (CP, item 5), 1.3 (LC)

OUT OF MEM report: 1.4 (RE), 1.5 (MG), 1.6 (AM), 3 (item 3),

Part II1I (intro)
Out of range errors: 1.1 (CP, item 16), 1.3 (LC, LI)

Parameters, changeable: Appendix 6
PERIOD key: 1.1 (ED), 1.3 (intro), Appendix 5
Prompts, command: .1 (intro), 8 (intro), 7 (intro)

Relative jump, target of: 1.1 (CP, item 13)
Relocation of atand-alone MicroMind: 6 (iteam 1)
Restrictions adapting to EDTASM: Appendix 8
DEFM: 1.1 (CP, iteas 3, 11)
DEFS: 1.1 (CP, itea 10)
EQU: 1.1 (CP, itea 12)
module size: 3 (item 3)
relative jump: 1.1 (CP, item 13)
symbol: 1.1 (CP, item 6), 3 (items 11, 12, 13)

Single-stepping: 4.1 (SP, BD)
Source code format: 3 (item 18) size restrictions: 3 (item 3)
Stack use: 6 (item 12)
Symbols dead: 3 (item 4)
restrictions on: 1.1 (CP, item 6), 3 (items 11, 12, 13)
undefined: 1.3 (LC), 7 (LD)

Tab (RIGHT ARROW): 1.1 (CP, items 1, 9), 1.1 (ED), Appendix 3, Appendix U4
Top of memory: 3 (item 19), Appendix 6
Transfer of control: 1.6 (EX, MD), 3 (item 19), 4.1 (JP), 4.3 (IA),
7 (JP)
Undocumented instructions: 3 (item 17), 6 (item 13), Appendix 1
UP ARROW key: 1.1 (ED), 1.3 (intro), 4.2 (MM, AS, P1), 4.3 (DS),
Appendix 4, Appendix S
Verification of object tape: 4.5 (VF), 7 (VF) of source tape: 1.4 (VS)

X mode: 1.1 (CP), 1.1 (ED), Appendix 4

Page 65

	Cover
	Table of Contents
	Directory of the Diskette
	Introduction
	Part 1 - The Assembler
	Section 1 - Assembler Commands
	Section 2 - Assembler in Action
	Section 3 - Inside Instant Assembler

	Part 2 - The Debugger
	Section 4 - MicroMind Commands
	Section 5 - MicroMind in Action
	Section 6 - Inside MicroMind

	Part 3 - The Linking Loaders
	Section 7 - Linking Loader Commands
	Section 8 - Linking Loader in Action

	Appendices
	1 - Legal Instructions
	2 - Assembler Command Summary
	3 - Source Code Entry
	4 - Editing Procedures
	5 - Entering Line Numbers and Addresses
	6 - Parameter Locations and Meanings
	7 - Summary of MicroMind and Linking Loader Commands
	8 - Adapting to EDTASM

	Index

