
The Instant Assembler

Assembly Language Development System
For the TRS-80

Written by John Blattner

Mumford Micro Systems
P.O. Box 400, Summerland, California 93067

(805) 969-4557

TABLE OF CONTENTS

Direotory or the Diskette••• 2
Introduction .•....•....•...... • . • . • • • • • • • • • • • • • 3

Preview of Inatant. Assembler ••••• • ••••.•••••••••••••••••••••• • •... 3
Nev Features or Version 2.1 ···•·····•··••···•··•••··•···••··•···· 3
What an Asae• bler Does•••·•••••·•••·••••••·•••••·••••••••·•·••••• ~

Part I. The Aaaeabler ••••········•••·•••·•·••·•·••····•··•·••······• 6
Seotion 1. Aaaembler COllllll6nds •••••••••·••••••••••••••••••••••••·• 6

1.1. Composing and Editing•··•••····••·•·••··••···••••••••··•· 6
CP, ED and Enter!ng Lina Numbers, CC

1.2. Inaerti.ng, Deleting, and Hoving ••·•••••••••••••••••••••••13
IS, DL, DH, MB

1.3.• Listing ••111
LC, PC, LL, PL, PR, LI, PI, LE, tE, LS, PS

1.1&. Tape Input/Output •••·•·••••••••••••·••••••••••·••••••••••17
WS, VS, RS, WO, WE, RE

1.5. Diek Input/Output ••19
OS, DI, tG, 00, OE, IE

1.6. H1eoellaneoua ••••••••••••••••··•·••••••••••••••••••••••••21
AH, RO, FR, DI, IL, EX, HD

Section 2. Exuple or the Assembler in Action ·••···•••••••······•23
Section 3. Inside Instant Assembler ·••••••·••··•••••••••••••••··•27

Part II. Tbe Debugger •••30
Section-• HicroHind C01111anda ••·•·•·•••••••••••••••••••·••·••••••30

~.1. Stepping, Breakpointing, and Executing •••••••••••••••••••30
SP, XC, BD, RH, BK, RB, SB, JP, CL

,.2. Register and Memory Display •••••·••••••·•••••••••••••••••34
RG, HH, AS, Pl, P2

-.3. Utilities •••••••••••••••••••••··•••••••••••·•••••••••••••36
FN, DS, HD, J>H

-••• Symbolic Disassembly and Transfer ·•••••••••••·•••••••••••38
SD, AD, IA

-.5. Tape and Printer Commands •••••••••••••·•••••••·•••··•••••38
TP, VF, J>P

Sections. Example of >HcroMind in Action •••••••••••••••••••••••• -0
Section 6. Inside MicroMind •••·•••·•••··••··••·•••·••••·•·•·•••·•42

Part III. The Linking Loaders ••·••··••••·•··•••··••••••••••••••••··•44
Section 7. Linking Loader Commands ••••··••··•••••••·•••·•••••••••44

LD, CL, SY, PH, 00, TP, VF, JP
Section 8. Example or Linking Loader in Action •••••••••••••••••••49

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

1 •
2.
3. ,. .
s.
6.
7.
8.

Legal Instructions tor Instant Assembler 2.1 ••••••••••••51
Summary or Assembler Commands •·•••••••·•••·•••••••••••••52
Source Code Entry ••••••••••••••••••••••••••••••••••••·••53
Editing Procedures ••••·•••••••••••••••••••••••••••••·•••5•
Entering Line Numbers and Addresses ••••••·••••••••••••••55
Parameter Locations and Meanings ••••··••••·••·•·••••·•••56
SU111111ary or HicroHind and Linking Loader COIIID&nda ••••••••57
Adapting to EDTASH ••••••••••••••••••••••••••••••••••••••58

Index •••••••.••.••••••••••••••••••••••••.•.••••.•••••••••••••••••••• 6 3

Page 1

DIRECTORYOF THE DISKETTE

Your Instant Assembler diskette contains six comand files, whose names and
functions are:

DSKIAS/CMD -- Diak Instant Assembler and debugger package.

DSKLLB48/CMD -- Bottom-Up Linking Loader for users with 48KRAM.

DSKLLB32/CMD-- Bottom-Up Linking Loader for users with only 32K RAM.

DSKLLT/CMD -- Top-Down Linking Loader.

MICROM/CMD -- Relocatable, stand-alone version or the single stepping
debugger, including a printing disassembler.

IASTRF/CMD -- A three-byte program with the sole purpose or providing a
nondestructive reentry to Instant Assembler.

The disk is formatted for the current version or TRSDOS for your maohine.
It you have two drives, you may put this disk in drive 1 and your TRSDOS
compatible operating system in drive o. To load and execute one or these
programs,simply type the name aa given above and hit ENTER.

It you have only one drive, you will need to use a different procedure. The
Instant Assembler disk has a special structure that will allow you to copy the
programson it to a TRSDOS system disk of your own. To do this, uae the
following step-by-step procedure:

1) Put a current TRSDOS system disk in drive O and hit RESET.
2) When the DOS READY prompt is displayed, remove the TRSDOS disk, insert the

Instant Assembler disk, and hit RESET again.
3) The disk should •boot up• with our sign on message. This message will tell

you which version of TRSDOS it is designed to work with. It the system disk
you are using is not the same type, put the correct system disk in drive O
and go back to atep ,.

4) The first program name will also be displayed and you will be asked to put
your system disk back in drive o.

5) Put your system disk in drive O and enter W to write the program onto your
ovn disk.

6) You will then be instructed to put the Instant Assembler disk back in drive
Oto copy the next program. Repeat this sequence until all programs have
been copied onto your system disk.

Page 2

INTRODUCTION

Preview or Instant Assembler
Disk Instant Assembler is a powerful, disk-based assembly system for the

TRS-80 Hodel I or Hodel III. Its unique design has the object or increasing
your productivity as a Z-8O assembly language programmer. Among its dozens of
convenient features, the following stand out:

(1) Immediateassembly, and immediate detection or most potential errors, as
the lines of symbolic assembly language code are entered.

(2) A compactly encoded source format that provides a 2-1/2 to 1 storage
advantage (both in memory and ondisk) over the standard source code format.
For example, all the source code for all the modules in the Instant Assembler
package fits on one 35-track, single density disk; the aame source code in
atandard (EDTASM) format would require three such disks.

(3) Production or independently written, relocatable code modules that can
be linked by the Linking Loaders (included in the package).

(4) In-memory assembly and immediate debugging with the built-in debugger,
featuring single-stepping with tull register displays.

Huch thought and hard work have been invested in this new version or the
highly acclaimed Instant Assembler to make it especially easy to use -- once
you have learned how. Yet, the program is so packed with features that it will
take aome time to learn to exploit all its strengths. You will find the
learning easier if you have had previous experience with an assembler such as
EDTASM (the TRS-80 Editor/Assembler). In any case, it is assumed that you have
(or will obtain) a table of the Z-80 mnemonic instructions, together with a
description of their functions -- information such as that provided in the
EDTASM manual. Appendix 1 contains a cryptic (but complete) list of the Z-80
instructions, including the undocumented instructions -- all of which are
recognized by Instant Assembler 2.1.

New Features of Version 2.1
Disk Instant Assembler 2.1 is an upgrade of Diak Instant Assembler 1.1 and

will accept the aource code produced by that earlier version, as well as the
source code produced by all versions or the Tape Instant Assembler. Earlier
versions of Instant Assembler may not be able to read the source code produced
by the 2.1 version, if that source code employs any or the new formatting
features of Instant Assembler 2.1.

The two most significant additions in Instant Assembler 2.1 are on-line
comments (now allowed) and full editing of source lines. Other noteworthy new
features include:

(1) True listing of decimal and negative operands.
(2) Character constants.
(3) Separate listing of internal source code errors.
(4) Output of EDTASH source to disk.
(5) Conversion or EDTASH source to Instant Assembler format.
(6) Merging of Instant Assembler source modules.
(7) Assembly and disassembly of undocumented Z-80 instructions.
(8) Disassembly and atep-wise debugging that can reference the

asaembler•a symbol table.

Page 3

If you are familiar with an earlier vera1on or Instant Assembler, you will
discover manymore new features as you read this manual. Indeed, one of the
added features is the manual's appendices, which present 1n summary or tabular
form the most easential information for the successful operation or your
Instant Assembler.

What an Assembler Does
The basic task of an assembler is quite simple: to translate symbolic

machine code (that is, assembly language) into numericmachinecode (hex code).
For example, a frequently encountered Z-80 instruction is

LD A, B

which has the ettect of transferring tbe contents of the B regiater to the A
register. When assembled (and loaded into memory), tbia instruction will reside
in a single byte somewhere in memory as the pattern or bits

0111 1000

or 78H. The assembler's role is to translate the symbolicLD A, B into the
numeric 78H. The usefulness or this function is due to the tact that it is not
at all difficult for a programmer to learn and remember the exact meanings of
several hundred inatructiona auch aa LD A,B, but it would be exceedingly
tiresometo try to memorize a like number of purely numeric codes.

Hany Z-80 instructions reter to memory locations, and some or these
locations are likely to change as a program evolves. As an example, suppose
that you have written a aubroutine that clears a certain buffer, and that in an
early assembly of your program this subroutine's entry point is 8000H. Then,
the instruction

CALL 8000H

would clear the buffer. But, a later assembly of the (revised) program may
place this subroutine at 8056H, in which caae all the CALL 8000H instructions
would have to be rewritten.

The solution to the problem or changeable addresses is to give these
addresses symbolic names that the assembler (or linking loader) can translate
to correct numeric values. In the above example you would give the instruction
at the entry point of the subroutine a label -- CLRBUF, let's say. Then, the
instruction

CALL CLRBUF

would clear the buffer, and you wouldn't have to concern yourself about the
actual numeric value of CLRBUF.

The use of labels (and symbols to reference the labels) can be extended to
the case in which you know perfectly well what the numeric equivalent of a
label is, but you want the instruction to be self-documenting. For example,

CALL 1C9H

will clear the video screen of any Model I or III, because there is a ROM
subroutine for this purpose whose entry point is 1C9H. But, it might be easier
to divine the purpose or the instruction if it were

CALL CLRSCR

Page 4

So, we want to EQUate CLRSCR to 1C9H. Z-80 assemblers furnish a "pseudo-op" for
this purpose: EQU. The pseudo-instruction we want is thus

CLRSCR EQU 1C9H

Besides the EQU, Z-80 assemblers provide four other useful pseudo-ops:
DEFB, DEFW, DEFM, DEFS. DEFB is used to assemble a one-byte constant into a
program;examples are:

TWO DEFB 2
DEFB •x •

; Note the• label
; A character constant

DEFW is used aillilarly to assemble a two-byte oonatant (but no~ two character
bytea). DBFM 1a tor aaaembl1ng a atring ot ASCII charaotera, aa in

HESSAG DEFH 'Do not touch tbe break key.•

(Note that apoatrophea are required to start and end the atring.) Finally, DEFS
reaervea a block ot atorage tor use by the program; tor exaaple

BUFFER DBFS 256

will reserve 256 bytes, the firat ot which will be at (ayabolic) memory
location BUFFER.

The above describes the fundamental duties of. your Inatant Assembler. All
other features are frills designed to aave you time in the creation or perfect
programs.

Page 5

PART I, THE ASSEMBLER

The assembler proper is the principal component or the asaembler-debugger
package that is loaded under the name DSKIAS/CHD. Learning to use the asaembler
requires first an understanding or its command structure. There are 37
twerletter co1111ands, which will be fully explained in Section t below; they
have been divided into six subsets tor clarity. (These commands are also
sW1111arized in Appendix 2.)

SECTION J, ASSEMBLER COMMANDS

When you load and run Disk Instant Assembler, you see a•?• (and a blinking
cursor) displayed at the left side of the screen just below the program title
line. This is the prompt tor entering an assembler command. The universal rule
for the entry or any comand (in the assembler, debugger, or linking loaders)
is that the entry is completed with the typing or the second letter; the ENTER
key does not have to be pressed to enter the command. If you type an
unrecognizable command, Instant Assembler will ask for the command again with
another prompt.

1,1, composing and Editing

At the heart of any assembler are the routines that make possible the
entering and editing ot source (symbolic assembly language) code. If you have
not programmed 1n assembly language before, you are in tor a pleasant surprise
-- typing Z-80 source code. (especially with Instant Assembler) is far easier
than typing BASIC code. And, if you have found the editing of lines of BASIC a
slow and frustrating task, you should be delighted with t.he editing facilities
or Instant Assembler 2.1.

CP (ComPoae)
Enter •cp• in response to the•?• prompt to comen~e the composition or an

assembly language program. If the source buffer is not empty, Inatant Asaembler
will respond •CODE ERASURE. PROCEED (Y/N)?• Either type •y• to erase the buffer
and to proceed with composing, or else press •H" (or almost any other key) to
abort the CP command. (Instant Assembler haa several protective features auch
as this one; they have been tailored to be as unobtrusive as poaaible.)

If the source buffer is empty (aa it wiil be when you first load the
program), and you enter the CP comand, you will be given a blank line number 1
on which to start your program. You will also notice a vertical bar followed by
the letter X in the lower right corner ot the screen. The reaaon tor this
display ia to remind you that you are in the •x• mode, which is the normal mode
for entering source code. It is possible to leave the X mode for the purpose or
editing the line that you are enteringi how to do this will be explained along
with the ED (ED1t) command a bit later. Now here are the rules tor entering
source code; it is recommend~d that you learn them through practice rather than
by memorization.

Page 6

(1) A composition line normally has three fields: label, opcode, operand.
Use the RIGHT ARROW key to tab t.o the next field; you cannot. tab farther than
the operand field. Use the LEFT ARROW key to backspace and erase the previous
character, including backspacing to the previous field 1r necessary. Each field
is restricted with respect. to the number and type or characters that it will
accept:

The label field accepts only a letter or the ampersand(&) aa its
tirat character, only letters or digits tor its aubaequent
characters, with a maximum of aix characters.

The opcode field accepts only letters, with a maximum of four
character a.

The operand field accepts anything (including spaces), with a
maximum of 115 characters.

It is not possible to enter more characters in a field than the field
limits just given. The ampersand as the first character or the label field ia
used to designate an external label -- one llhose value can be made available to
other aodules by the Linking Loader.

(The information of the above paragraphs is presented in more graphic form
in Appendix 3.)

(2) An on-line comment (that ia, a coament that appears on the same line as
an instruction) is entered 1n the operand tield, following tbe operand (or
operands), and preceded by a aemicolon (;). One OP more spaces may precede the
aeaicolon, but they are not required. Exa• ples or correctly entered on-line
comenta are:

EXIT1 CALL 60H iTiae delay
JP J&02DH iReturn to DOS

With the Hodel III, comments may be entered in lower case; uae the lower case
(SHIFT-0) toggle, but be sure to restore the upper case mode when the ooment
ia completed. Don•t worry about alignment or comments when entering source
linea -- they will be aligned automatically in listings.

(3) No on-line comment is allowed with a DEFH pseudo-instruction. Thia ia
not a severe restriction, since the DEFH is usually aelf-documenting.

(J&) By entering a semicolon as the first character of a line, you override
the three-field format given in (1) and convert the entire line to a comment
line, with a maximum of 59 characters (including the semicolon). (This initial
semicolon cannot subsequently be erased with the LEFT ARROW key; if erasure is
necessary, use SHIFT-LEFT ARROW.)

(5) Instant Assembler does not recognize tbe ORG, END, or DEFL pseudo-ops.
ORG and END are supplied automatically when a program is listed or recorded.
(You may use the RO command, explained in subsection 1.6, to set or change the
origin.)

(6) Symbols follow the rules for labels -- six characters aaximum, first
character either a letter or ampersand, subsequent characters either letters or
d1g1 ts. Symbols· may be postfixed with decimal offsets in the range or -31 to
+287, inclusive. (An offset gives the number ot bytes ot displacaent, Just aa
in EDTASH.) Any other combinations involving symbols are not legal; thus, LD
HL,HOL0+42 ia allowed, but LD HL,HOLD-~2 and LD HL,HOLD2-HOLD1 are not. A
symbol may represent an address or a 16-bit constant, but may not be used for
an 8-bit constant; thus, JR THERE ia valid, but LD A,SPACE is not,

Page 7

(7) Numeric constants may be entered in either decimal or hexadecimal -
though the first character must be a digit -- and • ay be prefixed with a minus
sign. Hex constants and addresses must also bear the postfix •H•. Legal entries
include:

LD
LD
ItlC
ADD

A,OCFH
B,-5
(IX-OBH)
A,(IY+20)

LI)

LD
LD
CALL

HL,23586
DE,-9
BC,OASA5H
33AH

Note particularly that the increment (or decrement) to an index register may be
in either decimal or hex and must lie in the range ot -128 (-80H) to +127
(+7FH), inclusive.

(8) Character constants may be used tor 8-bit operands. A character
constant must be preceded and followed by an apostrophe (single quote mark).
Examples:

LD
CP

A,'X'
t • f • (9) The pseudo-ops DEFB, DEFW, DEFH, and DEFS may be entered economically

by using SHIFT-1 (t), SHIFT-2 (•), SHIFT-3 (#), and SHIFT•-($), respectively.
Thia may be done either trom the label field or in the tirat character poaition
of the opcode field. For example, SHIFT-1 from the label field is equivalent to
typing the sequence TAB (that is, RIOtrr ARROW), •DEFB•, TAB, and places you
immediately in the operand field for entering the value of the b7te. This
feature is provided for convenience in assembling tablea, aeaaages, and storage
areas.

(10) The operand for a DEFS pseudo-op is restricted to the range 1 to -095
(decimal), inclusive. To reserve more than -095 bytes or storage, use aultiple
DEFS'a. DEFS O is illegal.

(11) Because of the -5 character limit in the operand field, a DEFH
pseudo-op cannot define a string ot more than -3 characters, since an
apostrophe (single quote) is required both to begin and to end the string. To
define a longer string, use multiple DEFH•a. With the Hodel III, you may enter
lower case characters in a DEFH string; Just be sure to return to the upper
oase mode when the entry has been completed.

(12) The operand for an EQU pseudo-op must be an absolute address. As
.examples, HERE EQU 823BH is legal, but HERE EQU THERE+1 1a not. Note
also that an EQU must have a label.

(13) All relative Jumps (JR, JR NZ, JR Z, JR HC, JR C, DJNZ) must refer
to symbolic target addresses. Examples or legal relative Jwap instructions are:

DJUZ LOOP
JR NZ,DELAY-3

Any relative Jump to an absolute address will be rejected; also, Instant
Assembler does not recognize"$" as a reference to the memory location of the
pr~sent instruction. Hence, the following are illegal:

JR 502!&H
JR C, $-12

Page 8

(11i) If you make a real mess in entering a line and would like to lidv.: a
freah start, type SHIFT-LEFT ARROW. You will then get a blank line wilh the
same line number.

(15) When a line of source code is complete, enter it by pressing ENTER.
Instant Assembler will immediately assemble it. (except tor a possible reference
to an aa-yet-W'ldefined label). If there is no detectable error, the instruction
1 s acce"ted and you are presented wi t.h the next line number in sequence for
continuation. To end composition, press the BREAK key.

(16) It any error is detected in an entered line of source code, Instant
Assembler will announce it with a measaie. Possible error messages at thi~
stage are:

HISSING LABEL
ILLEGAL LABEL -­
DBLY DFND LABEL -­
MISSIUG OPCODE
ILLEGAL OPCODE -­
HISSING OPERAHD
ILLEGAL OPERAllD -­
BAD OPERAND

(Label ia a Z-80 operand, such as •HL•.)
(Label has been uaed before.)

(Hot a Z-80 opcode.)

(tlot a z-80 operand.)
(Many possible reasons, including field overflow,
incorrect punctuation, and improper aixing of operands.)

OUT OF RNG -- (Backward relat1v·e Jump is tao long.)

Following display of the message, Instant Assembler switches to change (edit)
mode ror correction or the line and positions the blinking cursor in the
ortendin& field. How to make the correction will be explained under the ED
comand, which comes next.

ED (EDit)
The ED command allows you to inspect and change as • any consecutive line!

ot aource code as you pleaae in one continuous operation; insertions and
deletions of lines may also be freely intermixed with the changes. T0
understand the workings of this command, it is helpful to identity three
separate levels at which activities take place. For want or better names, let
us call these levels the •line• level, the •cursor" level, and the "edit"
level. At the line level, a line of source code is displayed tor your
inspection, but there is no cursor; Instant Assembler awaits your instructions
for the disposition of this line. Ir you choose to descend to the cursor level,
a nondestructive blinking cursor appears that can be freely moved about without
changing any characters in the field; most ordinary characters typed in at thi~
level are simply ignored. Finally, you can descend to the edit level, where
characters that you type are entered into the source line. Of course, it is
possible to move upward in the level hierarcy, too.

After you have entered the command •ED" in response to the•?• prompt, you
will be asked for a •FIRST LINEI?". Type the number or the firat line that you
wish to edit (or inspect), and pres, ENTER. This line of source code will the~
be displayed. You are now &t the line level, and you have several options fOl'

the disposition or the displayed line:

Page 9

UP ARROW Preas this key to back up one line. The previoua line is
displayed, and you remain at the line level.

DOWN ARROW -- Press thia key to advance one line. The next line is

ENTER
D

I

C

BREAK ·

displayed, and you remain at the line level.
S111e as DOWH ARROW.
Press the D key to Delete the displayed line. The next line
ia then displayed (with the same line number as the deleted
line). and you remain at the line level.

-- Presa the I key to Insert a line juat before the displayed
line. Descent is to the edit level (and the •x• aode) ror
entering the new line.

-- Press the C key to Change (edit) the displayed line. Descent
is to the cursor level.

-- Exit to Instant Assembler command level.

To clarify the action or the I key at line level, suppose tbat the
displayed line is line number 237. When you press the I key, you will be given
blank line number 237 on which to compose the line to be inserted. After this
lJne has been typed and entered (exactly as described under the CP command),
lhe orignal line number 237 will be displayed again with its line number
changed to 238. (And all following lines will have their line numbers increased
by 1 because or the insertion.) You will be back at the line level, and you
can. it you visb, use the I key again and again to inaert any number or lines
ahead ot the original line 237.

It you want to edit the displayed line, use the •c• key to descend to the
cursor level. At thia level you have available several cursor aotion co•anda:

SPACE •· Hove cursor one space to the right without eraaing the
character.

LEFT ARROW -- Hove cursor one apace to the left without erasing the
characteri move to previous tield if cursor is at left end
or present field.

RIGHT ARROW -- Tab to the next field.
n SPACE -- Hove cursor n spaces to the right without erasing.
n LEFT ARRCM -- Hove cursor n apaces to the left without erasing.

In the above, n represents a one- or two-digit number that you have typed
before the SPACE or LEFT ARROW; if you type more than two digits. only the last
two will be used. Also, the movement will not go beyond either end ot the
present field (except when n LEFT ARROW is used at the left end or a field).
Once you have positioned the cursor where you want it, 1ou may descend to edit
level in any one or the following ways:

SHIFT-D
n SIIIFT•D

SHIFT-I
SHlFT-C
SHIFT-H

SHIFT-X

-- Delete the character at the cursor, and return to cursor level.
Delete n characters starting with the one at the cursor, but
not extending beyond the present field. Retw-n to cursor
level.
Insert characters in front of the character at the cursor.
Chance (retype) characters starting at the cursor.
llack and enter; that 1.,, delete characters from the cursor to
the end of the field, and then go into entry mode.
Hove cursor to right end or present field and go into entry
mode.

Page 10

These ed1 ting modes (as wel 1 as the cursor motion command~) ar<: near· ly
identical to the ones in the LEVEL II BASIC line editor, except for the extra
SHIFT required to initiate some of them. In the entry mode Catt.er SHIFT-Hor
SHIFT-X), the LEFT ABROW erases characters as it backspaces, and the SPACE {if
it ·ia allowed in the field) also erpaes characters. In the I and C modes,
however, the LEFT ARROW does not erase characters. The I, C, H, and X modes are
continuous; that is, you remain in these • odes until you either tab or
backspace to another field, or until you cancel the modes with one of thes~
keya:

DOWN ARROW -- Cancel I, C, H, or X mode and return to cursor level.
SHIFT-UP ARROW -- Same as DCNN ARROW.

As you use the various edit modes, the display at t.be bottom right corner
of the screen (a vertical bar followed by a blank or a character) will change
to reflect the mode that you are in. Digits ¢yped at the ouraor level will also
appear in this window; the oharacter Mia used to signify any two-digit entry
larger than nine. If you are observant, you may notice a couple of apparent
anomalies that are, however, deliberate and correct: X mode turns into H mode
when you backspace, and Instant Assembler itself initiates the X (or H) sode
whenever you tab (forward) to an empty. field or backspace to a previous fi•ld.
A little thought will convince you that the X {or H) • ode is usually the
desired one in these circumstances.

It you botch the editing of a line, you can type SHin-LEFT ARROW to get a
blank line with the same line number tor reentering the code.

When a line has been edited to your satisfaction, preaa the ENTER key. The
revised line will then be checked for errors; it one 1s tound, it ia reported,
and you are returned to cursor level with the cursor positioned in the
attending field. When the corrected line is finally accepted, Instant Assembler
returns to line level and displays the next line or aource oode, except that,
if ED 1a used all the way to the end or the source buffer, an automatic exit ia
then made to the Instant Assembler command level.

When you descend from the line level to the cursor level by pressing the
•c• key, the displayed line is immediately deleted from the source buffer to
make way for the revised line. Since it would be untidy to leave th1&
unintended hole in the source code, Instant Assembler will not release you from
the ED command until you have entered an error-free version of the edited line.
For this reason, the BREAK key functions exactly like the ENTER key here,
rather than effecting a return to the command level.

Thouah the ED command has now been fully explained, we are not finished.
The same editing tacilitiea are sometimes used in oonnection with the CP
command, but the details or initiation and termination are somewhat different.

When you enter source code (with the CP command), you are normally in the X
(or ff) mode. (Thus, with the CP command, you enter the editing process at t.he
bottom, or edit, level.) If you decide that you would like to change part of
what you have entered, use the DOWN ARROW key to ascend to ouraor mode,
position the cursor, and make the change. Return to where you were working with
the TA& {RIGHT ARROW) and/or SHIFT-X keya.

NOTE: The keyboard might seem to die if you inadvertently hit the DOWN
ARHOW key while in X (or ff) mode. If this happens, merely type SHIFT-X to
restore normal operation.

Page 11

A line or source code that you have composed with the CP coamand aay have
an error that Instant Assembler detects. In this case, you are thrust into the
editing process at the curaor level, with the cursor positioned in the
offending field. (Review iteq (16) under the CP co• mand.) The editing
procedures are atill the same, ot course. Note, however, that you can uae the
BREAK key here to escape to the command level, since no line or source code has
been deleted by the editing procedures ot CP mode.

(Editing procedures are summarized in Appendix,.)

Entering Line Numbers
The ED command and several ot the command& to be described later require a

starting line number. (Some of the othera also require an ending line number.)
Since Instant Aaaembler prompta tor the information that it needs, you do not
have to remember any special syntax (such as •ED:122•, or •ED,122•). Alao, ror
your convenience in finding lines, Instant Assembler ptovides three different
ways in which line numbers can be entered:

(1) As decimal numbers. This direct method requires that you know your
targeted lines by number. The listing commands (Section 1.3) can be helpful in
finding these line numbers.

(2) As labela (with optional decimal otfaets in the range ot -31 to +99,
incluaive). For example, asking tor the line •EXIT• would cause Instant
Assembler to find the line or aource code with the label •EXIT•. Asking tor
•EXIT+10• would direct Instant Aasealler to the line whoae line number ia 10
larger than that or the line with label •EXIT•. Note tbat the offset here 1a
the number or lines or offset from the specified label. Thia feature or being
able to address a line by its label (or label plus ottaet) makes it easy to
find lines in a large program if you have a rough (band-written) copy or the
source code, or a printed listing or an earlier version ot the progr•.

(3) By means or the current line pointer. Instant Assembler maintains a
current line pointer that contains the line number of the last line to have
been displayed on the screen (or, in some oaaes, the line before that one).
When a line number is requested, you may use the•.• (period) key to d•and the
current line. It you press the UP ARROW (or the DOWN ARROW) key, you requeat
the line before (or the line after) the current line.

If you use method (1) or (2) above, and if you enter a line number that 1a
less than 1 or larger than that of the last line in the source butter, Instant
Assembler will respond •BAD• and ask tor the line number again. The aame ia
true if you enter a label (or label plus offset) that doea not correspond to
any line of source code.

(Thi& material on entering line numbers is summarized in Appendix 5.)

CC (Continue Composition)
After composition has been ended with the BREAK key, it may be continued by

entering the cc command. You will be given a line number oAe larger than that
of the last line or code in the source buffer to continue your program. CC may
also be used to add to a source program that has been read in from disk or
tape. An auxiliary use of the CC command 1s to find the line number or the last
source line; when the CC command is entered, the current line pointer is set to
the number or this last line.

Page 12

1,2, Inserting. Deleting. Moving

These commands all require a atartina line numberi two of them (DH and HB)
alao. require an ending line number, and HB requires yet a third line number.
Rerer to the paragraphs on Enterina Line Numbers in Section 1.1 (at the end of
the ED command) •

IS (InSert)
When you use the IS command, Instant Assembler will ask for a •LINEI?•. The

insertion vill be immediately betore the line whose number you specify. For
example, it you inaert at LINE# 69, the inserted line will then have the line
nwaber 69, while previous line 69 will become line 70, previous line 70 will
beco• e line 71, etc. After you have composed the new line (exactly as with the
CP co•and), it 1a inserted, and Instant Aaaeabler will give you the next line
number tor continued insertion. Jou • ay insert as many instructions aa you
please. Uae the BREAK key to exit from IS mode.

DL _(Delete Line)
Uae DL to delete a single line. Instant Assembler will aak for the

•LINE#?•. The deleted line will be displayed on the screen to confirm the
correctness ot the deletion. The line numbers or all lines following the
deleted line will be decreased by 1.

DH (Delete Hul tiple lines)
Uae DH to delete a block or lines. Instant Assembler will ask tor the

•FIRST LINEt?• and the •FINAL LINE#?• ot the block in two separate questions.
These • ay be independently entered as decimal numbers, or labels plus oftaets,
or v!tb the current line pointer facility. The first line of the deleted block
will be diaplayed on the screen as a partial confiraation or the correctness or
the dJletion. Multiple .deletion reduces the line numbers of all lines rollowins
the deleted blook.

H8 (Hove Block)
Use HB to move a block of source code from one position to another. Instant

Aaaeabler will aak tor three line numbers (with separate queries). •FIRST
LINEI?• and •FINAL LINEt?• designate tbe first and last lines of the block to
be moved, whU e •IIISRT LINEI?" is the line number at which the block will be
inserted. (It will be inserted Just ahead of the line whose line number 1a the
INSRT LINEI.) The INSRT LINEI must either be less than the FIRST LINEI or
greater than the FINAL LINEI plus one; otherwise, you will get a •BAD• • easage
and a request tor reentry or this line number. HB will obv1oualy have a drastic
effect on aany line numbers.

To move a block to the end ot the program, first add a NOP at the end
(using the CC command), move the block to just in front of the NOP (INSRT LINEI
=•.•,using the current line pointer facility), then delete the NOP.

Page 13

l ,3, Listing

In the listing co-ands, a tirat letter ot •L• directs the listing to the
screen, while a tirst let.tar "Ot •p• direct.a the listing to the line printer.
(If printer output is selected, have the printer turned on and ready.) Tbe LL,
PL, and PR ooaanda require one or two line numbers; enter these as explained
in Section 1.1 (at the end or the ED comand).

For every screen listing command except LI, 12 (or, aometi• es, 13) lines
are presented at a ti11e tor your inspection; when you are react, tor tbe next 12
lines, press ENTER (or any key except BREAK, SPACE BAR, or UP ARROW). Thia
12-linea-at-a-time progress ot screen 11at.inga may be overridden by depreaaing
the SPACE BAR. Holding the SPACE BAR down will cause oontinuoua aarolling or
the 11at1ngi thia scrolling will atop instantly when you release the SPACE BAR.
Rapid depression and release or the SPACE BAR will etreot the listing ot one or
two additional linea or the progru. With the SPACE BAR releued, ENTER will
act in its uaual fashion to cause the listing or another 12 lines. Wben using
the LC or LL 001111and, after a pause in the video listilfg, the UP ARRal key will
cause the listing to move backward about 10 lines, ao that you can review it.
Thus, the ENTER, SP.\CE BAR• and UP ARROW keys give you pin-point control ot
listings to the acreen.

In a liating to the line printer, Instant Assembler indents each line eight
spaces to provide a lett margin tor binding. After each 59 lines or printed
listing, Inatant Aaaeabler supplies seven line reeds tor pagination in the
standard (66 lines per page) print.er tor• at. The 59-counter is reset to zero
each tiae a new listing command is entered. The print parameters given here
lnumber or spaces or indentation, number of lines per page), and a rev others,
can be changed ao as to produce printed output in almost any tor• at tbat you
want; bow to do ao ia explained in Appendix 6.

Any listing can be terminated by depressing the BREAK key and holding it
down tor a bit.

All source code listings are assembly listings; the format is essentially
that ot EDTASH, with the following exceptions:

(a) Bytes ot hex code are separated by spaces tor readability. (b) The
t •irat rour aaaembled bytes tor a DEFH instruction are displayed as tor other
instructions. Bytes after the fourth are not listed. (o) The aemory
addresses or all instructions except EOU's are shown at the extreme lett ot the
listing. No ••ory address is displayed for an EQU pseudo-instruction.

(It ia also possible to obtain source-only printed listings by changing certain
print parameters. See Appendix 6 tor directions.)

Besides the aoreen listing commands described below, Instant Assembler
allows a quick listing or the current line. From the comand level, press the
PERIOD key to display the c:urrent line; the OP ARROW and DOWH ARROW keya
function similarly to list either the line before, or the line after, the
current line. This current line listing facility also has an extension: By
holding down the SPACE BAR before pressing the PERIOD, UP ARROW, or DOWN ARROW,
you can cause 1- lines to be listed, ending with the current line, its
predecessor, or its successor.

Page 111

LC (List Completely)
LC cauaea a complete listing to be posted to the screen (wilh a pause after

each 12 linea unless the SPACE BAR is held down). A complete listing consists
of ~e ORG line (supplied by lnatant Aaaembler), the aaaembled source code
(with an error message at the right end ot each line in error), the END line
(also auppl1ed by IMtant Assembler), the error count, and the symbol table.
The ayllbol table ia in alphabetic order and is printed four symbola to a line
for oompaotneaa. The possible error aesaages in a listing are just these two:

••ooR•• (Out or Range.- relative jump is too long.)
••UDS•• (UnDef1ned Symbol.)

(A aource line aay require two lines or listing. In this case, if an error
• eaaage is also required, it will appear at the right end or the aecond line.)

NOTE: It you use the UP ARROW key with the LC command to review the
listing, errors that are passed over will be counted again 1n the forward
listing, ao that the t1nal error count may be too large.

PC (Print Completely)
PC is like LC, except that the output is to the line printer.

LL (List to the Last line)
After the LL command is entered, Instant AsHmbler will ask tor a •FIRST

LINEI?•. Respond with the line number (as a decimal, label plus otfaet, or
current line) of the first line to be liated. The listing will commence there
and continue (with a pause after each 12 lines) to the last source line, or
until the BREAK key 1a used to terminate the LL command. No symbol table will
be listed.

PL (Print to the Last line)
PL is like LL, except that the output ia to the line printer.

PR (Print a Range of lines)
After the PR command 1s entered, Instant Assembler will ask for & •FIRST

LINEt?• and a •FINAL LINEt?•. These are the numbers of the first and last lines
of source code to be listed, and may be entered independently as decimal
number, label plus offset, or current line. Output is to the line printer.

LI (List Internal errors)
All ••ooR•• (Out Of Range) errors, all undefined internal symbols (those

not co1111enc1ng with•&•), and all relative jumps to undefined external symbols
are internal errors. It is essential to correct a aodule's internal errors
before •ploying the Linking Loader to link it to other modules. The LI cOlllll&nd
makes it easy to find and correc~ all internal errors in your program.

When the LI command is entered, Instant Assembler will display the first
source line that has an internal error and then pause. (This pause is at the
"line• level, as described under the ED command.) You now have three choices:

Page 15

(a) BREAK vill return you to Instant Assembler command level. (b) Either
DOWN ARROW or ENTER vill cause Inatant Assembler to find and display the next
aource line that has an internal error. (o) Pressing the •c• key opena the
displayed line tor editing -- •~actly as with the ED command. (The •c• key
causes a descent to the cursor level.) When the editing is completed (by
pressing ENTER), and the edited line is accepted, Inatant Assembler will find
and display the next source line that has an internal error.

After the laat line with an internal error has been disposed of. the count or
internal errora will be displayed; thia count will be zero if there vere no
auoh errors to begin with.

PI (Print Internal errors)
The PI c01111and causes all source lines with internal errora to be liated on

the line printer, with a count at the end.

LE (List External undefined symbols)
LE caus&a all external undefined symbols to be listed to the acreen; they

are listed in alphabetic order, eight to a line. Each symbol is listed only
once. even it it occurs aeveral times in your program.

External undefined symbols may not be actual errors, aince they aay
correspond to labels in other modules. The LE comand allows you to check that
no typographical errors have been made in these symbols. It real errors are
discovered, the FR ao•and (Section 1.6) can be used to locate and correct them
pa1 n1 eaaly.

PE (Print External undetined symbols)
PE is like LE, except that the output is to the line printer.

LS (Liat Symbols)
LS causes the symbol table to be listed to the screen. Thia listing is in

alphabetic order, four symbols to a line. (External symbols are listed firat.)
The defined value of each symbol is displayed next to .the symbol. (Actually,
what ia listed is a label table. Undefined symbols are not listed.)

PS (Print Symbols)
PS is like LS, except that the output ia to the line printer.

Page 16

l,Y, Tape Input/Output

In all its tape input/output fwtctions Instant Assembler prompts tor the
items or 1nforaation (titles, addresses) that it needs. Any tape comand can be
abor.ted by pressing the BREAK key in response to a request fOf' information. In
the Hodel III, all tape commands of Instant Assembler aet the cassette speed to
500 baud to ensure reliable recordings and to allow necessary processing during
loadina.

WS (Write Source)
The VS command ia used to record a source tape (in Instant Assembler

format) ot the program in the source butter. After the VS comand ia entered,
you will be asked for a •TITLE?•. The title is restricted to 6 characters, the
first ot which must be a letter; subsequent characters must be either letters
or digi ta. Have the tape ready tor recording, with the PLAY and RECORD keys of
the cassette depressed. Aa soon aa you press ENTER after typing the title, the
recording will begin.

VS (Verity Source)
After recor4ing an Instant Assembler source tape with the VS command,

rewind the tape and use the VS co1111and to verity it. (Have the tape ready tor
reading before entering the VS command.) VS requires no arguments and returns
either •aooo• or •BAD• in reporting on the verification. In caae or a •BAD•
verify, try adjusting the volume betore repeating the VS oomnd; as a last
resort, record the program again and werity it.

RS (Read Source)
The RS command causes a aource tape (recorded in Instant Asaembler for• at

with the VS co•and) to be read into the source buffer tOl" editing, assembling,
or debugging. (Thia source code will replace any that is already in the
butter.) It the source butter 1a empty when you type the RS command, Instant
Assembler will aak tor a •TITLE?•; when this has been entered, the tape will be
read. It the source butter is not empty when you enter the RS 0011118.Dd, Instant
Assembler will respond •CODE ERASURE. PROCEED (YIN)?•. If you decide to proceed
with the source input, type •Y•; you will then be aaked for a •TITLE?•. (The
title is restricted to six characters, the first or which must be a letter,)
Have the tape ready tor reading as you complete the entry ot the title. Instant
Assembler will report on the read with either a •GOOD• or a •BAD• message. In
case of a •BAD• read, rewind the tape and try again (perhaps adjusting the
volume before the second try.)

WO (Write Object)
The WO command is used to record an object tape (in SYSTEH format) or the

program in the source buffer. After the WO command is entered, you will be
asked tor a •TITLE?•, an •ORIGIN?•, and an •ENTRY ADDRF.3S?•. (The entry address
is the point at which the program will be entered after a SYSTEM load and a
response or •1• to the following••?• prompt.) When the entry address has been
entered, recording will commence. (Caution: have the cassette ready for
recording, for the completion of this entry may not require pressing the ENTER
key.)

Page 17

The origin and entry addresses • ay b~ independently entered in any of the
following ways:

(a) By default to the value or the source code origin, aa aet with the RO
001111nnd and aa displayed at the beginning ot a listing with the LC command. To
request this default value, merely press the ENTER key in response to the
address query. (b) Aa a hexadecimal address. For this mode, enter the
address aa tour (or tever) hexadeciul digits. Do not enter a zero in front ot
a leading A, B, C, D, E, or F. Do not type •H• at the end or the entry. (c)
Aa a decimal address. For this mode, enter tive (no fewer) decimal digits. Pad
vith leading zeroes to make up the required five digits. (Thia will not usually
be neceaaary, ainoe nearly all programs will have origins above 10000 deciul.)

(Methods (b) and (o) are uaed throughout the Inatant Assembler package tor the
entry or addrea•s. Appendix 5 repeats thia information.)

NOTE: Object code recorded with the WO command is in one contiguous block;
there are no skips tor DEFS pseudo-ops. In fact, a DEFS instruction causes the
specified number or bytes to be recorded aa zeroes on the object tape.

WE (Write Edtasm source tape)
The WE command is tor recording a source tape (or the program in the source

butter) that can be read and edited by EDTASM. You will be asked tor a •TITLE?•
and an •ORIGIN?•; recording commences as soon as the latter is entered. (The
origin can be entered in any ot the thtee ways described under the WO command.)
The line nu• bera tor a source tape produced with the WE command start with
00000 (far the ORO line) and proceed in ateps or 10.

RE (Read Edtasm source, translate, and merge)
The RE command allows you to translate EDTASM source tape to Instant

Assembler format. You vill be asked tor a •TITLE?•, after this has been
entered, the entire EDTASH tape will be read into RAH above Instant Assembler's
source butter. (Ir this oode is too extensive to tit into your memory, reading
will halt with an •our OF HEM• report.) With the EDTASM source in memory,
translation comencea, each source line is displayed on the screen, translated,
and added to Instant Aaaembler•a source buffer. It an error 1• detected in a
line, translation is interrupted, an error message~• posted, and a blinking
cursor appears in the offending field. (You are at the cursor level in the
editing process.) Hake the necessary correction in the line, press ENTER, and
the translation and merging will continue.

NOTES: (1) The new source code is added to any code already in the source
butter; it you want to clear out the burrer before translating an EDTASH tape,
u3e the CP command, answer •y• to the •CODE ERASURE. PROCEED (Y/N)?• query,
thon press BREAK.

(2) Use ot the BREAK key at any time in the translation process (includinc
during an edit) will terminate the operation. If you use tbe SHIFT-LEFT ARROW
while editing a line, that line will be deleted from the translated source
code.

(3) The ORG and END lines of the EDTASH source are translated as comment
lines in the Instant Assembler source.

Page \8

(4) Since some EDTASH lines do not permit direct translation to Instant
Assembler format, a bit of ingenuity will occasionally be required to co~plete
the operation. For a tough problem like LD BC,END-BEG+1, you may have to make
a temporary change (to allow the translation to proceed), note where thia line

·occurs, and return to it for a more conscientious edit when the translation has
been completed. (For a number of auggeftions on how to make theae edita, refer
to Appendix 8.)

l,5, Disk Input/output

In all its disk input/output tunotions Instant Aaaeabler pro• pta tor the
ite• s ot information (file namea, addresses) that it needa; it alao provides
protective • echanisma to minimize the chance of inadvertent erasure or either a
diak tile or the source butter. Any disk comaand can be aborted by preaaing the
BRIAX key in response to a request tor information. A blinking asterisk appears
1n the upper right corner or the screen during disk tranatera. It any error
ocours, the diagnostic message supplied b7 DOS is displayed, and Instant
Assembler then allows you either to repeat or abort the operation.

OS (Output Source to disk)
To aave source code (in Instant Assembler format) on disk, enter •os• in

response to the•?• prompt. You will then be asked tor a •FILE NAME?•. Enter
thia name in standard file specitication fOMDat, including extension and drive
number. (It ia a good practice to designate your aouroe code tUu with their
own reserved extension, such as •sRc•.) Attar the tile na11e baa been entered,
DOS will be requested to open the tile. If no tile with this naae exists on the
disk, the tile will then be initialized, the legend •HEW FILE.• will be
diapla7ed tor your information, and the source code will be recorded and
veritied.

It a file already exists on the disk with the tile name that you entered,
Instant Assembler will .respond, •FILE REWRITE. PROCEED (Y/N)?•. Type •Y" here
to proceed with rewriting this file, or else type •N• (or almost any other
character) to abort the OS command.

IN (JNput source code trom disk)
The IN command causes a source file (previously recorded using the OS

comand) to be read from disk and placed in the source butter tor editing,
assembling, or debugging. (This source code will replace any that ia already in
the buffer.) It the source buffer is empty when you enter the IN command,
Instant Assembler will ask you for a •FILE NAME?• and then transfer the source
code trom this disk tile. If the source buffer is not empty when you enter the
IH command, Inatant Assembler will respond •CODE ERASURE. PROCEED (Y/N)?•; you
then have an obvious choice of proceeding with or aborting the input request.
If you prooeed, the source burrer will be erased, and you will then be asked
for a •FILE NAME?•.

Page 19

HG (HerGe source code from disk)
The HG command allows you to merge Instant Aaaembler source modules. You

will be aaked for a •FILE NAME?•; after this haa been entered, the entire
Inatant Assembler source file will be read into RAH above the aource buffer.
(It this code is too extensive to fit into your memory, reading will halt with
an •our OF HEH• report.) With the new source tile in aemory, merging commences;
each line is displayed on the screen and added to Instant Aaaembler•a source
buffer. If a detectable error is encountered, merging is interrupted, an error
message is posted, and a blinking cursor appears in the offending field. Edit
the error, make a note or where it waa, pre~• ENTER, and the aer1ing will
continue. (An error in merging is either a doubly defined label or an out ot
range relative jump to an earlier label that is about to be doubly defined.
Change the second occurrence or the label, then, after the • erging 1a oo• plete,
you may use the FR c~mmand to find all references to the old label and change
the appropriate ones among these to refer to the new label.) The BREAK key may
.be used at any tiae to terminate the merge operation. SHIFT-LEFT ARROW, uaed on
,a line with an error, will delete that line.

00 (Output Object code to disk)
The 00 comaand is uaed to record (on disk) an assembled veaion or the

program 1n the source buffer. This recorded program ia in standard diak object
format, ready to be loaded and executed tr011 DOS. To use tbe co1111&nd, type •oo•
in reaponae to the •?• prompt. You will then be asked tor a •FILE NAME?•, an
"ORIGIN?•, and an •ENTRY ADDRESS?•. The origin and entry address may be entered
1 n any ot the three ways that are given under the WO c01111and (Section 1 .II.) and
in Appendix s. When all this information has been entered, DOS vill be
requested to open the tile. Depending upon the outcome ot this request, Instant
Assembler will report •NEW FILE.• (followed by transfer of the object code to
disk) or •FILE REWRITE. PROCEED (YIN)?•. In the latter case you then have a
choice of continuing or aborting the operation.

NOTE: Object code recorded with the 00 command is in one contiguous block;
there are no skips tor DEFS pseudo-ops. In fact, a DEFS instruction causes the
specified number or bytes to be recorded as zeroes in the object file.

OE (Output Edtasm source to disk)
The OE command is for recording (on disk) a source tile that can be read

and edited by disk EDT.ASH. After entering this command, you will be asked tor a
•FILE NAME?" and an •ORIGIN?". Enter the origin in any or the three ways given
under the WO command and in Appendix 5. When this information has been entered,
DOS will be requested to open the tile. Depending upon the outcome or this
request, Instant Aasembler will report •NEW FILE.• (followed by tranater ot ihe
aource tile to diak) or •FILE REWRITE. PROCEED (YIN)?•. In the latter caae you
then have a choice or continuing or aborting the operation.

The line numbers for an EDTASH source tile produced with the WE command
start with 00000 (for the ORO line) and proceed in steps or 10. The source file
is normally recorded with six initial ASCII spaces (a dummy title), which seems
to be the format that is expected by most disk versions ot EDTASH. It is
possible, however, to suppress these six characters in the recording if your
Disk EDTASH doesn't accept them; how to do so is explained in Appendix 6.

Page 20

I£ (Input Edtasm source, translate, and merge)
The IE command functions exactly like the RE command (Section 1.4), except

that you are asked tor a •FILE NAME?• (instead of a •TITLE?•), and the input is
troa disk. Refer to the RE command tor a complete description of this
operation.

While Instant Assembler 1s a complete assembly system, the OE and IE
comands have been provided so that you may use it in oonjuction with EDTASH.

1,6. M1sce11aneous

AH (Assemble-to-Memory)
The AM command permits 1ou to aaseable a source program directly into

memory. Onoe assembled, the progra• • ay be debugged with the debugging
aubsyatem (MicroMind). After the AM comaand bas been entered, Instant Aaaembler
will respond •1sr FREE HEH: xxxx•, where the XXXX is the hexadecimal address of
the tirat memory location available tor the assembly. You will then be asked
for an •ORIGIN?•, Which may be entered in any ot the three ways that are given
under the WO command (Seotion 1.,.) and in Appendix 5. Thia origin must be at
least as high aa the number announced in the 1ST FREE HEH report; otherwise,
Instant Aaae• bler will respond •BAD• and aak tor the origin again. Alao, the
origin must be low enough to allow the assembly to take place in the remainder
ot RAH; 1t it is not, Instant Assembler will reply •our OF HEH" and ask fOl' the
origin again.

When the assembly is finished, the total number ot errors encountered will
be reported. Also, the address that you entered in respoae to the •ORIGIN?"
request will now be the origin or the source code; thus, if you list the
program, the listing will correspond exactly to the assembled program.

RO (Reaet Origin)
U~e the RO command to detine (or redefine) the origin or the source

program. After the RO command is entered. you will be asked tOI' an •ORIGIN?•.
Enter this in either decimal (five digits) or hexadecimal (four or fewer hex
digits) -- see Appendix 5.

FR (Find References)
The FR command enables you to find (and edit, if you choose) all

instructions in the source program that reference any specified symbol. Instant
Asaembler responds to the FR command with the query "FIND?•. Answer this by
entering any symbol that is in the source code. (It you enter a nonexistent
symbol, Instant Assembler will merely repeat the •FIND?• question.) Instant
Assembler will then display the first source line that references this symbol.
The pause that follows (which is at the •11ne• level, as described under the ED
comand) gives you three options:

(a) BREAK to return to Instant Aaaeqbler coamand level. (b) DOWN ARROW
or EtlTER to find and display the nexL source line that references the specified
symbol. (c) •c• to open the displayed line for editing -- exactly as with
the ED command.

Page 21

arter tbe lim bu been ed1 ted (aaawa1ng the •c• option vu exerci•d), Inatant
Aaae• bler v111 find and d1aplay tb• next line tbat. reterenou tbe 1pec1t1ed
a,•bol. Uter tbe lut llm oonta1 ntn1 aucb a reterenoe bu been cU.1poNd ot,
Jnatant laae• bler vill aak tor another ay• bol by repeating the •FIID?•
4ueation. U• tbe 11111 key to terainate the FR • ode.

DJ (Directory)
Th• DI oouand allova you to viev a diakette directory without leaving

Instant 1 bler. Tbia OOllll&nd tunationa under tour operating ayat•a: IEWDOS
80 1 DOSJILUS 3.1&, Hodel III TRS-DOS, and Hodel III LJ>OS 5.1. la it OOIIU to Jou,
the DI ~-Ind 1• Nt. to vork vi tb Hodel III TIS-DOS; bCllf to ola&Da• 1 t t.o work
v1tb another operatina ayat• la explaimd in Appendix 6.

After enterina tbe DI c01111and, you vill be aaked tOl" a •DRIVE t?•. lupond
vitb •o•, •1•, •2•, or •3•, aa appropriate. The directory vlll tben be
displayed. (V1tb Hodel III TRS-DOS, only tbe or tbe t1rat 118 tilu OD th•
diak vill be abC111n.)

IL (IC11L)
Tbe IL oo-and peralta you to kill a tile without leaving Instant

Aaaeabler. ltter typina tbe OOIIIIINI, you vill be aaked tor. •FILI NAME?•. When
thia baa been entered, Inatant Aaae• bler vlll reply •1ILL. PROCIID (Y/1)?•.
Either type •t• to kill the tile or -r to abort the IL COllll&nd.

a (Ent to DOS)
Uae the IX caaaand to exit ately to DOS.

HD (tranater to • 1croM1nD)
Use the MD oo•• and to tranater control to HioroMind -- the debugging

aubayat• or Instant laaeabler.

Page 22

~ECTIQH 2, EXAMPLE Ol· THE ASSJ;:MQLl::R IN ACTION

Load and run Instant Assembler, and enter the CP command. Then compose the
following source code. (Line number a are furnished by Instant Assembler, or
course.)

0001 ;HEX-TO-DECIMAL CONVERTER -- PART 1
0002 &BEGIN CALL 1 C9H ; CLEAR SCREflf
0003 LD HL,3C1~H
000- LD (-O!OH),HL
0005 LD HL,TITLE
0006 CALL &VIDOT
0007 CALL &CARET
0008 INPLP CALL &CARET
0009 LD HL,HEXNH
0010 CALL &VIDOT
0011 CALL &ICBINP
0012 LD HL,&BUFFR
0013 CALL &COHVT
001, JR C,INPLP
0015 LD A,(Ja020H)
0016 AND OCOH
0017 ADD A,11
0018 LD (~020H),A
0019 LD A, 1<1

0020 CALL 33AH
0021 LD A,20H
0022 CALL 33AH
0023 EX DE,HL
002, CALL OA9AH
0025 XOR A
0026 CA~L 1034H
0027 OR (HL)
0028 CALL . OFD9H
0029 LD HL,-131H
0030 CALL &VIDOT
0031 JR INPLP

;DISPLAY TITLE

;DISPLAY PROHPf
;TAKE INPUT

;CONVERT TO BINARY
;IF ENTRY IS BAD

;TAB 11 SPACES

;DISPLAY THE 1<'

;TAB 1 SPACE
;BIHARY NU~£R DI HL
; SET TYPE FLAG

;CONVERT TO DECIMAL

; DISPLAY DECIMAL NUMBER

0032 TITLE DEFH 'HEX-TO-DECIMAL CONVERTER'
0033 DEFB O ;MESSAGE TERMINATOR
0034 HEXHH DEFH 'HEXI? •
0035 DEFB O
0036
0037 ;PART 2 -- VIDEO OUTPUT AND CONVERSION ROOTINES
0038 &VIDOT LD A,(HL) ;NEXT CHARACTER
0039 OR A
0040 RET Z
0041 CALL 33AH
0042 INC HL
0043 JR &VIDOT
0044 &CARET LD A,ODH
0045 JP 33AH
0046 &CONVT LD DE,O
0047 NXTHX PUSH HL
0048 EX DE,HL

;IF TERMINATOR
;POST TO SCREEN

;CARRIAGE RETURN

;INITIALIZE ACCUMULATOR
;SAVE POINTER

Page 23

00119 ADD HL.HL
0050 ADD HL.HL
0051 ADD HL.HL
0052 ADD HL.m.
0053 EX DE,HL ;DE MULTIPLIED BY 16
oosai POP HL ;POINTER
0055 LD A• (HL) ;NEXT HEX DIGIT
0056 SUB 30H
0057 RET C ;BAD ONE
0058 CP 10
0059 JR C,DIOIT ;IF 0-9
0060 SUB 7
0061 BET C ;BAD ONE
0062 CP 16
0063 CCF
0061& RET C ;BAD ONE
0065 DIGIT OR E
0066 LD E,A ;ADD TO DE
0067 INC HL
0068 DJNZ Nxmx
0069 RET
0070 .

' 0071 i PART 3 -- KEYBOARD INPUT ROQTINE
0072 &QIHP LD B,O ;INITIALIZE CHAR COUNT
0073 LD HL.&BUFFR
00711 LD A, 1 II ;TO TURN CURSOR C.
0075 POST CALL 33AH
0076 LD A,B
0077 CP Ja
0078 JR z.CRET ;IF LIMIT IS REACHED
0079 NXTCH CALL 119H ;GET NEXT CHARACTER
0080 LD (HL) ,A ;PUT IN BUFFER
0081 CP ODH
0082 JR Z,CRET ;IF ENTER KEY
0083 CP 31
0081& JP Z,DOS ; IF CLEAR KEY
0085 CP 8
0086 JR Z,BICSPC ; IF LEFT ARROW KEY
0087 INC HL
0088 INC B ; INCREASE COUNT
0089 JR POST
0090 BKSPC LD A,B
0091 OR A
0092 JR 2,NXTCH ; IF NO CHARS ENTERED
0093 LD A, (HL)
009Ja DEC HL
0095 DEC B ;BACK UP 1 CHAR
0096 JR POST
0097 CRET LD A,15 ;TO nJRN CURSOR OFF
0098 JP 33AH
0099 &BUFFR DEFS 4
0100 DOS EQU 1102DH

Page 211

In entering th~ above pro£ram you may need to refer frequently to the
procedures detailed under the CP command in sub3ection 1.1 of Section 1. When
you have finished, you will have obtained a working knowledge of most of these
procedures. (Did you use SHIFT-1, SHIFT-3, SHIFT-~ for DEFB, DEFH, and DEFS?)
The . on-line comments do not have to be aligned when you enter them; they v.111
be aligned automatically in all listings. Also, if you have-a Hodel III, you
could enter the comments in lower case.

After t.he last line has been entered, press the BREAK key and type •LI•. If
you have done your work correctly, you should get the reaponse, •ERR COUNT:
ooo•. (If not, you may edit the error lines one at a time as they are
displayed.) Then type •LE• to check that there are no external undefined
syabols. Next, type •Ls• and take a look at the symbol table~ Note that the
values of the sym~ols are low because an origin of O baa been assumed for your
program. You may use the RO couand to change the origin to anything you wish.
Now type •Le• and use the ENTER key to go through the entire source program 12
lines at a time, checking it caretully again:st the above 11at1ng. It you have a
printer, turn it on, make it ready, and enter the PC co-and to obtain a
printed listing of the program.

Now use the OS command to make a disk file of this program tor later use.
Cive it the tile name •HDCONV/SRC•. Then, with the DM coaaand, delete lines
"&VIDOT-2• through "DOS". If you have done this correctly, only lines 1-35 (and
the ORO and END lines) will remain, and there will nov be eight •••uDs•••
errors in the residual program. Since all these errors are references to
external labels that w·ill ultimately be resolved by Linking Loader, they are
acceptable. Make a disk file of this segment or the program (with the OS
command), giving it the file name •HDCNVl/SRC".

Next, use the IN command to read the HDCONV/SRC tile. (You will have to
override the source buffer protection feature to do this.) With the original
program in the source buffer again, delete (with the DM command) lines 1
through "HExtlM+2• and lines "&KBIN·P-2• through •oos•, retaining Part 2 of the
program. (Part 2 by itself should show no errors when listed.) Hake a source
tile of this segment, using the title •HDCNV2/SRC•. Finally, load the
HDCOIIV/ SRC f 11 e once more (with the IN command), delete lines 1 through
•&kBlNP-2•, and make .a source file of Part 3 (which also should have no
errors), giving it the title •HDCNV3/SRC•. Save these tour disk files tor later
practice with MicroMind and Linking Loader.

By this time you have exercised many of the commands of Instant Assembl~r.
To practice using the rest of the commands, read in the HDCONV/SRC file again.
Enter the AH command, answer the •ORIGIN?" query with "9000•, and press ENTER.
Your program will be assembled into memory starting at 9000H, and Instant
Assembler should report •ERR COUNT: ooo•. Transfer to MicroHind by typins •~m•.
Then enter the JP command, respond to the query "ADDRESS?• with •9000•, and
press ENTER. Your hex-to-decimal converaon program will now execute. ~nter any
hex number or up to four digits (pressing ENTER if the number of characters is
less than four), and the number will be instantly converted to its decimal
equivalent. When you tire of this, press the CLEAR key, and control will be
transferred to DOS. From there you may reenter Instant Assembler by typing
•IASTRF" and pressing ENTER. You will find the source butter intact.

If you v1sh, you may make an object tile or the hex-to-decimal converter.
Use the 00 command, and give it a file name of •HDCONV/CHD•, an origin of 9000H
(press EHTER for the default origin), and an entry point or 9000H (also by
pressing ENTER in resp0nse to the query). Later, you can load and execute this
file from DOS. Also, you may make an EDTASH source fife with the OE command;
save this for later review when you have EDTASH in your computer.

Page 25

To aee how the block move command operdtea, type •HB•, and then move Part 3
ot the progr• to Just in front ot Part 2. (FIRST LINEI • &JCBINP-2, FINAL LINE#
s DOS, and INSRT LINE# s HEXNHt-2.) Next use the FR command to find all lines
that reference the •&VIDOT• label. End this session with Instant Assembler by
practicing inserting (IS), deleting (DL), and editing (ED).

(Since you may be interested in the inner workings of the hex-to-decimal
converter, a few words are in order to clarity so• e or ita more mysterious
instructions. The program uses several ROH subroutines; otherwise, it would be
muoh longer than it is. The ROM subroutine at 1C9H clears the screen. The one
at 33AH diaplays a character at the cursor position and updates the cursor. The
subroutines at OA9AH, 103,H, and OFD9H act to convert a 16-bit binary number to
a string ot decimal digits. The subroutine at ~9H scans the keyboard and
decodes the input characters. Locations -020H--021H contain the address or the
video memory cell in which the cursor resides. Any remaining mysteries could be
solved by using HicroMind to step through the program.)

Page 26

SECTION 3, INSIDE INSTANT ASSEMBLER

This aection is a collection of tidbits and hints -- information about your
asae• bler that you will eventually want to have.

(1) Whenever you want to exit to Instant Assembler's co•and level, uae the
BREAK key. The only time that this won•t work is when you are editing a aource
lina, 1n which oaae BREAK aota like ENTER.

(2) ·rbe line nwaber or any inatruotion -- instead or being fixed as it is
in EDTASH -- is determined by the relative position or the instruction in the
aource butter, which may change as a result of insertion, deletion, or block
aov•ent. This implicit line numbering has aeveral advantages over fixed line
numbering. For one thins, it allows continuous inaertion or new lines without
periodic interruptions tor renumbering. Also, the block • ovement comaand is
much easier to implement with implicit line numbering. And-· not leaat -·
i • pl1oit line numbering aaves a great deal of apace in the storage or the
source code. Ot courae, there are aoae dia•dvantagea, too. One or these ahovs
up when you want to delete two or more nonadjacent lines or code. For example,
suppose that you wish to delete lines 69 and 85; it you tirat delete line 69,
you will find that the other line is now number 84. One vay to handle this
problem is to delete from the top down. (In the example, delete line 85 tirat.)
Another way is to address each line by its label (plus offset); in fact, this
ability to address a line by its label (plus offset) trees you from dependence
upon absolute line numbers. As a last resort, you can always find the
us>-to--date line number or any instruction by using the LL command.

(3) There are limits to the size of a source module that can be
constructed. The first limit is iapoaed by memory size. If you run out or
m•ory while composing a program, Instant Assembler will report •out OF HEH•
and exit to command level. Another limitation is that the total number or
symbols may not exceed 102~. It a newly entered symbol would exceed this limit,
composition ia halted with a •snm OVF• (symbol overflow) aeaaage. The final
constraint is that your program•a length should not exceed 32168 bytes (of
object code). The only possible way that this limit could be exceeded before
you run out or memory is for you to reserve a great amount or atorage (with
DEFS1 a) in your program. Instant Assembler provides no protection against this
most unlikely overtlowi you are responsible for seeing that it doean•t happen.

(~) Deletions from Instant Assembler source code do not result 1n deletions
from the symbol table of that source code. It a module goes through many
revisions, it may collect a number or dead symbols in its table. Since these
dead symbols still apply to the 102~ limit or (3) above, it aight be desirable
at some time to purge the symbol table. Thia can be done by merging (with the
Ki command) the source module into an empty source buffer.

(5) When a listing to the screen pauses after 12 lines, you are still ir.
listing mode. It you wish to edit one of the displayed lines, press BREAK (or
almost any other key) before typing the ED command.

(6) It you want to move a line that has a label, either use th~ HB command,
or else delete the line before reinserting it. An attempt to insert the line
before it is deleted will result in a •DBLY DFND LABEL• error.

(7) For the most part, numeric constants are listed in the sue form in
which you enter them. However, there are a few exceptions. All index register
offsets are listed in decimal. The operand of any RST instruction (if greater
than 8) is listed in hexadecimal. All 16-bit hex values are listed with four or
five hex digits; thus, CALL 60H is listed as CALL 0060H. (This quirk is at
the request of Bryan Mumford.) 8-bit hex constants are listed without
unnecesssary leading zeroes, however.

Page 27

(8) Origins and entry addresses entered in hexadecimal do not require a
terminating Hor a leading zero. Thia feature is tor your convenience.

(9) When the source burrer is empty, the message •NO CODE• will be
displayed in response to any co•and that would operate on the source code.

(10) External labels are those that commence with an ampersand. You may use
them whenever you reel like it; all your labels may be external it you chooae.
However, you need to use them only 1r the program module that you are composing
will be loaded together with other modules that reference it. Then, every
instruction and storage location in this module that will be referenced by
another module aust be given an external label. Later, Linking Loader will be
able to assemble and link all the aodulea. (Linking Loader does not check tor
doubly det1ned external labels, ao you must be careful that you use each
external label in only one module. Any nonexternal label may be used in as • any
modules as you please.)

(11) An instruction like LD HL,STORE+512 is not accepted by Instant
Assembler because or the size or the ottset. To construct an equivalent
instruction, simply use another label closer to the target address. (A DEFS
instruction ahead or the nev label may be necessary tor correct positioning.)

(12) An 1natruct1on like LD BC,END-BEG+1 presents a harder problem, and
may require the expenditure or a few additional bytes of code. The following
coding will always suffice, and may be shortened (by deleting the PUSH and POP)
if the HL register pair is tree at the time.

PUSH HL
LD HL,END+1
LD BC,BEG
OR A
SBC HL,BC
LD B,H
LD C,L
POP HL

(13) Although Instant Assembler does not permit the use of symbols to
represent 8-bit values, there is usually an easy way around this limitation,
too. A typical example of the use of an 8-bit symbol is the following:

OUT PORT1 ,A

with the symbol PORT1 defined by means of an EQU. (The purpose of this is to
make it easy to change all port numbers by changing one EQU.) The following
Instant Assembler-compatible code will accomplish the same objective:

DEFB OD3H ;•OUT• INSTRUCTION
DEFW PORT1 i PORT NUMBER

The 16-bit value for PORT1 (established by an EQU) will have a high-order byte
or zero, which is a NOP to the Z-80.

(1~) Instant Assembler has been carefully designed to make it difficult for
you to wipe out the source buffer inadvertently. If you want to do this
deliberately, use the CP command, respond wyw to the •CODE ERASURE. PROCEED
(Y/N)?• query, then press BREAK.

(15) If your printer has trouble working with Instant Assembler, or if you
would like to change the format of printed listings, make a careful study or
Appendix 6. Then, try changing some or the print parameters.

Page 28

(16) When Instant Aaaembl er prompts you fol' information (FILE NAME?,
ORIGIN?, etc.), it does not permit you to enter more characters than the
aaximum number that any correct answer could use. It you enter this maximum
number of characters, Instant Assembler will illmediately analyze your responae;
you do not have to press the ENTER key in this case. Exception: Your answer. to
tbe •TlT~E7• query muat be completed by pressing ENTER.

(17) The upper and lower halvea of the IX and IY registers can be
independentlJ addressed through a nu&ber of undocumented Z-80 instructions.
These half-registers are given the names IXH (IX high), IXL (IX low), IYH, and
IYL. For exuple, CP IXH ia a two-byte instruction that coapares the A
register with tbe upper eight bits ot the IX register. The inatruction tor• a in
Appendix 1 that contain the symbol •x• as an operand correspond to the
undocuaented inatruotions. Inatant Aasubler will recognize and assemble any of
these tor• a. These intructions provide you with tour additional 8-bit
reaiatera, with an overhead charge or one extra bJte of object code per
inatruction.

(18) Instant Aaae• bler aource code 1a oloaer to object code than it 1a to
text. Th• actual format is aa follows: Each instruction ia preceded by a
bit-encoded header byte that contain• intoraation about the type and length of
the inatruotion, vbetber tbe instruction baa a label, whether it references a
symbol, and whether an extension byte ia needed to provide turtber information.
This header byte is followed by tbe object code tor the instruction, except
that a symbolic address is repreaented by the nuaber or tbe ayabol (that 1a,
its position ln tbe symbol table) rather than the value or tbe syabol. It an
extension byte is needed, it tollova the object code. An extension byte aay
contain an extension ot tbe symbol ortaet, tormat intaraation tctl" listing the
instruction, and a tlag to indicate an on-line co• aent. Any on-line CC11111ent
then tollowa the extension byte (headed by a byte giving ita length). In
addition to the code structure Just outlined, Instant Aaae• bler aource also
contains a symbol table. Bach symbol ia kept in 10 consecutive bytes of the
table; aix or these bytes bold the actual characters ot the ay• bol, tvo bytes
contain the value or tbe syllbol, and tvo bytes serve aa a linked liat pointer
to the next symbol in alphabetic order. Tbe •value• ot a syllbol -- other than
an EQUated ay• bol -- 1a ita ottaet trom the origin or tbe .source code module.

(19) It at any time you tind 1ouraelt back in DOS and want to return to
Instant Asaembler without deatroying the aource butter or resetting the memcry
protection (in 5AFEH-5AFFH), merely type •IASTRF• and press ENTER. IASTRF
employs the nondestructive reentry to Instant Assembler at 5803H, an address
that you may. use from any other program that bas a transfer capability.

Page 29

PART II. THE DEBUGGER

Instant Assembler's debugger is named MioroHind, and it 1a supplied in two
forms. The integral HicroHind ia contained within the DSICIAS/CHD package and 1s
reached via the HD command r~om the assembler subsystem. The stand-alone
HicroHind 1a the HICROH/CHD file on your diskette. The two versions are
identical except for a tew commands and the relocating feature of atand-alone
HicroMind. The 0011mand differences are treated in Sections 4.• and 4.5, and the
procedure tOI' relocating stand-alone HicroMind is explained in Section 6, item
(1).

SECTIOJI .If, HICROMIND COMMANDS

MicroHind has 21 two-letter commands, which will be fully explained in this
section. (They are alao summarized in Appendix 7.) As in the assembler
subsystem, response to your command follows immediately upon typing the second
letter or the command. The command prompt in HicroHind is•••. The BREAK key
can be used at almost any time to return to command level.

9,l, steon1os, Breakpoint1ns, and Execut1oa

SP (SteP)
Thia command puts HicroMind into the step mode, which allows you to step

through a machine language program one instruction at a time. Thia mode v1th
its regiater displays provides a nearly infallible tool tor debugging. After
you have entered the SP command, you will be asked for a •FIRST ADDRESS?•,
which ia the address where you will begin to execute the machine language
program step-by-step. This address may be entered in either decimal or
hexadecimal. The rule tor the entry or all addresses is: If five digits are
entered, the address is in decimal; if fewer than five digits are entered, the
address ia in hexadecimal. (This rule is also explained in Appendix 5.)

Once you are in step mode, the registers will be displayed at the top right
of the screen, and you may fetch and execute instructions merely by pressing
ENTER. As each instruction is fetched, it is displayed in two linea at the top
left of the screen; the first display line shows the memory address and the hex
bytes of the instruction, while the second line shows the Z-80 mnemonic torm of
the instruction.

ENTER actually half-steps through the target program. You see the FETCH and
EXECUTE cycles as separate half-~teps, each activated by pressing ENTER. After
the EXECUTE cycle, another register display at the bottom right of the acreen
shows the contents of the registers after execution ot the instruction; the
DEFORE register display remains in the upper right corner of the screen, so
that the effect upon the registers of the instruction just executed can be
clearly seen. When th~ next instruction is fetched, the BEFORE display will
change to contain the information or the AFTER display from the previous
execution, and the AFTER display will be erased.

Page 30

The register displays are largely self-explanatory. Each double register is
presented with a designator followed by the (hex) contents of the regist~r. The
most important flags are also displayed as separate bits; their designators arc
CY for CarrY, Z for Zero, S tor Sign, and PV for Parity/oVerflow. Following the
BC, DE, HL, IX, and IY displays are single hex bytes in parentheses: these
represent the contents or the memory locations pointed to by these 16-bit
regiatera. For example, it you aee DE: ,are (E6) in the display, you know
that the DE register pair contains -8FBH and that memory location -8FBH
contains OE6H. The two-byte hex number in parentheses following the SP (stack
pointer) diaplay ia the number (or addresa) on the top of the atack. This
nuaber 1a presented in the natural form ot high-order byte first, even though
the high-order byte is in the memory cell whose address is one more than the
contents ot the SP register. The PC display shows the contents of the program
counter, which points (in the BEFORE display) to the memory location from which
the instruction has been retched, or (in the AFTER display) to the memory
location trom which the next instruction 1s,to be retched.

In the SP mode you may tast-step through several (up to 99) instructions by
typing a two-digit number in response to the••• prompt. For example, entering
•03• vill cause three complete instructions to be executed in rapid succession.
The register di~plays show the register contents before the tirst instruction
is executed and after the last instruction has been executed. (This feature of
HicroHind is especially helpful in working through a short loop that has to be
executed many times.)

NOTES: (1) Onoe you are in SP mode,)'OU will not permanently exit from it
except with a JP (JumP), CL (CalL), or (in integral HicroHind) IA (transfer to
Instant Assembler) command. However, you can reinitialize the mode with another
SP co11111and. (2) When you are in SP mode and the••• is displayed, pressing
EHTER will always cause the next half-step (FETCH or EXECUTE) to be carried
out. This is true even 1r you have made extensive use or other commands since
your last step. To clear the lett side or the screen so that the FETCH or
EXECUTE cycle can be clearly observed, merely press BREAK. (3) Not all hex
numbers can be decoded as legitimate Z-80 instructions. In the unlikely event
that MicroHind encounter• such an indecipherable combination in the instruction
stream while stepping, it will treat each byte as a NOP ror execution (and
display no mnemonic tor that byte) until it arrives at the next recognizable
instruction. Further discussion ot this point will be found under the DS
co•and in Section -.3.

XC (eXeCute)
XC is operative only in step mode, and only it the last inatruction retched

is a CALL, conditional CALL or RST (restart). Ita effect is to execute the
called subroutine as a whole, without stepping. It is useful when the target
subroutine has already been debugged. The register displays show the contents
ot the registers before the subroutine is called and after it has been
executed. It the XC command is entered when it is inapplicable, it 1a simply
ignored, and another••• prompt is issued. If the fetched instruction is a
conditional call, and if the condition is not met, the XC command merely has
the effect of stepping through the conditional call instruction without
executing the subroutine.

Page 31

BD (Blank Display)
Thia co•and is operative only in step mode. Its effect ia to clear the

1 soreen (except tor less than half a line in the extreme lower left corner), to
tranater an abbreviated display or the fetched instruction to the lower left
corner or the screen, and to pel"lllit continued stepping vith the target program
in control or the screen (except for the half-line in the lower left corner).
Pressing ENTER now causes execution of the fetched instruction and retching of
the next instruction in sequence (full-stepping rather than the half-stepping
of SP mode). No register displays are available in BD mode; the target program
can be traced, but a detailed examination of ita workings is no longer
possible.

To return troa BD mode to regular SP mode, merely press the BREAK key;
there will be no loaa or place or of continuity in stepping through the target
progr-a.

The BD aode baa been designed to allow you to aee a target progr• print on
t~e video screen. Since many instructions are normally required to post even
one character to the screen, single-stepping througb a video display routine
can be distressingly slow. Therefore, HicroHind provides three aub-commanda in
BD mode to apeed up the action:

(1) Depressing the R (tor Run) key while in BD mode causes stepping to
occur at about 1•0 instructions per second. Releasing the R key terminates the
fast-stepping and returns you to the aingle-stepping (via the ENTER key) ot BD
aode. (2) The S (tor Seek subroutine) key has the fast-stepping effect of
the R key, except that fast-stepping !s terminated whenever a CALL, conditional
CALL, or RST is encountered in the instruction stream. Often keyboard input
requests are mixed in with video output, and stepping (even fast-stepping)
through an input routine can be an aggravation. Use of the S key in BD mode
allows you to rast-atep until a subroutine call is reached, then pause long
enough to use the X key. (3) The X (for execute) key permits execution ot
the subroutine as a whole. The X key is to BD mode what the XC command is to SP
mode.

RN (RuN)
RN is also operative only in SP mode; this colDlll8nd enables fast-stepping

(with a blank screen) to any designated terminal address. After you have
entered the RN colllllUlnd, you will be asked for a •FINAL ADDRESS?•. Thia ia the
address ot the last instruction to be fetched. (The run will be ended when this
instruction is fetched but not executed. The run starts, of course, from the
instruction that you have reached in SP mode.) The FINAL ADDRESS should be
entered in accordance with the usual rule for entering addresses (Appendix 5).

The RN command permita you to execute rapidly a portion or the target
program v1thout leaving or reinitializing the SP mode, and with the assurance
that your designated terminal point (which may even be in ROM) will be honored.
When the final address has been reached 1n RN mode, the tast~stepping will
stop, and you will be in BD mOde.

If you wish to exit from Rtl mode before the terminal address is reached,
press the BREAK key. You will then be in BD mode, from which you may continue
with single-stepping, or use the R, s, and X keys, or return to SP mode by
pressing BREAK once more. Note, however, that if you now use the R key, it will
return you to RN • ode (running to the designated final address); that is,
releasing the R key now will not terminate the (still unsatisfied) run -- only
the BREAK key can do that in this instance.

Page 32

BK (BreaXpoint)
The BK command allows you to set a breakpoint in RAH. After-• BK•, you

will be asked for an •ADDRESS?•. This should be the address of the first byte
or some instruction 1n the target program. (HicroHind will not accept any
address lover than -OOOH.) HicroHind will then replace three bytes or the
aaahine lanauage program with a jump to a HicroHind entry point and will
confirm the breakpoint with the message •BREAK AT (addreaa)•. (The three
replaced bytes are saved for later restoration.) If the BK command ia entered
when a breakpoint 1s already in effect, the same message vill appear (with the
old breakpoint address) in rejecting the c011111and.

Upon return trom a breakpoint, an AFTER register display will appear in the
lower right corner of the screen, ahow1ng the contents of the registers at th~
COllpletion of the program segment terminated by the breakpoint.

RB (Restore Breakpoint)
RB undoes the effect of BX. It may be used if you change your mind about

the breakpoint tbat you have aet, or it may be used after returning tro• a
breakpoint. Since only one breakpoint can be in effect at any one time, RB
might be used to restore an old breakpoint so that a new one may be set. When
the RB comaand is entered, the confirmation •BREAK.AT (addreaa) RESTORED• will
appear, aaau• ing that a breakpoint was actually in existence; if there was no
breakpoint, the legend •NO BREAK• will be displayed.

SB (Step from Breakpoint)
SB combines the effects of RB and SP, with the latter commencing at the

address or the breakpoint. That ia, the breakpoint will be restored, and the
instruction at the address or the breakpoint will be the first one fetched fOI'
step.vise execution. SB is useful after a return from a breakpoint, at which
tiae the registers will be in exactly tbe condition io which the program
segaent Just executed has lett them. If the SB command is entered when no
breakpoint ia in effect, the legend •NO BREAK" will appear.

JP (JumP)
The JP command allows you to transfer control to any point in memory,

including ROM. After•• JP", you will be asked for an "ADDRESS?•. (To change
your mind at this Point, us~ the BREAK key to cancel the JP 00111111and.) When this
address has been entered, the registers will be loaded with tbe values shown in
your last register display (if you were in SP aode), and the Jump will be taken
to the specified addresss. JP is useful in conjunction with a breakpoint; after
setting a breakpoint with BK, use JP to execute part of a machine language
program and then return to MicroHind.

It 1a obvious that caution must be exercised in the uae of JP, since
control ia taken out of the hands of MicroMind. In particular, if the jump
address is five digits (decimal), be certain that you have entered it correctly
before typing the last digit, for the fifth digit automatically triggers the
Jump.

Page 33

CL (CalL)
The CL command allows independent execution of any closed subroutine 1n ROH

or RAH. After entering the CL command, you will be asked for an •ADDRFSS?•.
Respond with the entry point address or the subroutine to be executed. Aa aoon
as the address entry is completed, the screen is cleared, the registers are
loaded with the values shown i~ your last full register display (it you were in
SP mode), and control is transferred to the target subroutine. (If you wiah to
adjust the contents of the registers before calling the subroutine, use the RG
command, which is explained in the next section.) The return will be to
MicroMind. You may inspect the contents of the registers after execution or the
subroutine by usina the SP oommand (with any tIRST ADDRESS) to call up a full
register display.

-,2, Be11stec and Memory Display

RO (ReGiater display and change)
The RG command allows you to inspect and change the contents of a target

program•• registers. Following•• RG•, you will be asked to name a register by
the query •REG?•. You may answer this question with •1•, •cy• (for CarrY), •z•
(for Zero), •s• (tor Sign), •PV• (tor Parity/oVertlow), •ac•, •DE•, •eL•, •xx•,
•11•, or •sp• (for Stack Pointer). A tvo-letter name automatically triggers the
display ot the contents or the named register; it your request ia tor the A, Z,
or S register, you must press ENTER to trigger the display. Note that the tlaga
can be inspected and changed as conveniently as any of the other registers.

When the register•a name haa been entered, its contents will be displayed
to the right of the name, followed by a LESS THAN prompt. To change the
contents or the register, enter a new byte (in hex) tor the A register, either
•o• or •1• for a flag, or a new number (in address format -- either five
decimal digits, or tour or fewer hex digits) tor a double register. (If you
enter a new byte with only one hex digit tor the A register, you will have to
press ENTER to complete the entry.)

It you were in SP mode before using the RG command, and if you were between
FETCH and EXECUTE cycles, then all register changes will be immediately
reflected in the BEFORE register display. Such changes will not be shown,
however, after an EXECUTE cycle -- they will appear after the next FETCH cycle.

If you don't viah to change the contents or a displayed register, Just
press ENTER. Completing an entry on one line (either by entering a change tor
the register or by pressing ENTER) will cause a new •REG?• query to appear on
the next line. To exit RG mode, use the BREAK key, either in response to the
LESS fflAN symbol that prompts the register change, or in reaponae to the •REG?•
query. You will be returned to SP mode it you were there before using RG, and
you may then continue stepping through a program.

The RG command is useful in debugging for the following reason (a111ong
others): Often you will discover an error that adveraaly affects register
contents. Rather than having to abort the debugging procedure to make a change
in the program, you may make a note or the discovered error, use RG to set the
registers right, and then continue stepping.

Page 3~

HH (HeHory display and change)
HH allows you to inspect and change the contents or memory locations. (ROH

may be inspected, too, but not changed.) After•• HM•, you will be aaked for a
•FIRST ADDRESS?•, which again may be in either decimal or hex. Arter a meaory
cell is displayed (one hex byte following the hex address or the cell), a L~S
THAN pr011pt will appear, and you may change the contents or the cell by typing
your new byte (which • ust be in hex). (If you type a single character here, the
transaction must be completed by pressing ENTER. A two-character entry
autoaat1oally triggers the change.) When the change has been entered, the
display advances to the next • emory cell. It you preaa ENTER without entering a
change, the display al.so advances.

In integral HicroMind, 1f you press the DOWN ARROW (or the UP ARROW) key
without entering a change, the display will be advanced (or backed up) one
••ory location. (These features are not implemented in stand-alone HicroHind.)

If you want to back up, or to advance, one or • ore addresses, use the MINUS
(-) key, or the PLUS(+) key, respectively, followed by the number of addreases
that you vish to back up or advance. (These two characters are typed in lieu ot
a hex byte for changing the contents of the memory cell.) Following the Hll~US
or PLUS, digits 0-9 will have their natural effect, while letters A, B, c, ••• ,
Z will back up or advance the address by 10, 11, 12, ••• , 35 locations
(respectively).

To exit from HH mode, use the BREAK key. If yoQ were previously in SP mode,
you will be returned precisely to where you were before you used the lf-1 command
-- except, of course, that some memory cells aay have been changed. (It you
were bet,,een FETCH and EXECUTE cycles, the instruction fetched will remain the
same even if you changed it in memory during the HH operation.) Memory changes
will be immediately reflected in the BEFORE register display if (and only if)
you are between FETCH and EXECUTE. (Remember that the register display ahows
the contents or those memory lo~ations that are pointed to by the double
registers BC, DE, HL, IX, IY, as well as the two-byte number on the top of the
stack.)

AS (AScii display)
The AS command allows you to decode blocks or mmory as ASCII characters.

After•• AS•, you will be asked for a •FIRST ADDRESS?•. Respond with the
starting address of the block of memory that you wish to examine. MicroMind
will then display five lines or 10 characters each and pause, awaiting your
ne~t directive. Pressing either the DOWN ARROW or the ENTER key will cause the
next five lines of 10 characters to be displayed, while pressing the UP ARROW
key will cause the display to back up 50 characters. Presa BREAK to end the AS
mode.

Here's an example of the use of the AS command: With HicroHind running,
enter the AS command and give it an address of 1650. You will then be reading
the start of the BASIC command table in ROH. Press DOWN ARROW repeatedly to
scan this table. Note the amall graphics block at the upper left corner ot the
initial letter of each oomaand. This block indicates that the character in
memory haa bit 7 set. A graphics block at the lett middle of a character
indicates that it 1s actually a lower case character. A two-wide graphics block
where a character should be indicates that the number in memory cannot be
deciphered as an ASCII character. And, finally, a three-tall graphics block
where a character should be indicates a carriage return.

Page 35

Pl (Page 1)
The Pl c0111111and is used to display a small block of memory. After•• Pl•,

you will be asked tor a •FIRST ADDRESS1•. When you have responded, 19
consecutive memory cells starting at this addresa will be displayed at the
next-to-bott011 line of the screen. (Page 2 will ai• ultaneoualy be displayed at
the bottom line.) The two-byte bex number at the extreme left or the P1 display
line is the address or the first memory cell or the display.

When HicroHind has posted the Pl display, it will wait until you press
another key. Pressing either the DOWN ARROW or ENTER key will advance the
starting address or the P1 display by 1OH, while pressing the UP ARBO., key will
back up t.he display by 1OH. Either or these actions may be repeated tor as long
as you desire; thus, you may quickly acan a large section or memory. Preas the
BREAK key to return to the facilities or H1croH1nd.

Wben HicroHind is tirat activated, Page 1 will not be displayed until
either the P1, P2, or SP OO111111and is invoked, or memory is changed with the t-t1
command. When thia occurs, both Page 1 and Page 2 will appear on the screen,
and their displays will remain in evidence until you exit from HicroHind. A
return from a breakpoint will reactivate the page displays, but other reentries
will not.

P2 (Page 2)
P2 ia exactly like P1, except that the display is on the bottom line of the

screen. P1 and P2 may be set independently, so that you can keep an eye on tvo
different regions ot memory, which can be extremely helpful in debugging.

Y,3, UTILITIES

FN (Find Number)
The FN command allows you to tind all occurrences or either a one- or

two-byte number in a block or memory. (This can be especially useful for
finding all program references to a certain address.) After•• FN•, you will be
asked for a •FIRST ADDRESS?•. Respond with the starting address or the block of
memory to be searched. When this has been accepted, HicroHind will aak you for
a •FINAL ADDRESS?•. Respond with the last address of the block ot memory to be
searched. Then the question •FIND?• will appear. Answer this with the number
that you wish to locate in the specified memory block. (Entry or thia number
follows the usual rule for entry or addresses given in Appendix 5.) Ir you
enter three, four, or five characters here, HioroHind will aearoh tor a
two-byte number (or address); if you enter only one or iwo characters,
HicroHincl will search for a one-byte (hex) number. (In the latter case, expect
a lot or matches unless the meaory block is small.) The addresses of all
occurrences of your search number in the specified memory block will then be
displayed, four to a line. (For a two-byte search number, the address shown
will be that or the low-order byte.)

After HicroH1nd has reported all addresses corresponding to your search
number, it will post another "FIND?• query. By entering another number here,
you may continue searching the same block of memory. To exit from FN, press
BREAK.

Page 36

DS (D1Sasaemble)
The DS command enables you to see instructions in memory (including ROM) in

their 2-80 mnemonics. After•• DS•, you will be asked ror a •FIRST ADDRESS?•.
Respond with the startine address of the program that you wish to disaaaembl~.
The instruction at that address will be disassembled and displayed in the
fOl"llat explained under the SP command. HicroMi.nd will then pause, awaiting your
next directive. Pressing either the DOWN ARROW or the ENTER key here will cause
the next inatruction in memory to be displayed, while pressing the UP ARROW key
vill result in the display or the instruction at memory address 10H lower than
that or the next instruction. Either of these actions • ay be repeated tor as
long aa you viah. Preas the BREAI key to end the DS • ode.

NOTE: Not all hex numbers can be decoded as legitimate z-80 instructions.
For example, the byte ODDH by itself is meaningless -- it requires at least one
following byte to give it meaning. And not all following bytes are legal; DD01
is not the beginning of any valid Z-80 instruction. When the disassembler
enoountera auch a combination, it repo~ta only the first byte (with no
anaaonic) on a line, and then proceeds (as you preas DOWN ARROW or ENTER) one
byte at a tiae until it tinds a combination that it can decode. I~
diaaaaeabling data, this type or aabigui·ty can eaaily arise. When you have
worked through the data, the MicroHind diaaaaeabler will quicky get back into
•sync•, though an instruction or two following the data • ay be aiareported. In
stepping through a program (with SP) 1 the same iapaaae is poaaible, though tar
leas likely than in random diaasaeably. In this unlikely event, HioroMind
treats the unidentifiable code byte-by-byte - turning eaob byte into a NOP for
execution - until it can get back into •ayno•.

HD (Hex-~Deoimal conversion)
Atter •• HD•, you will be aake~ tor a •HEXI?". Inter any nu• ber or not • ore

than tour (hex) digits, completing the entry by pressing ENTER it fewer than
four digita are typed. MicroHind will respond witb the deciMl equivalent of
that hex nuaber. It will then ask for another •HEXI?. Terminate thia mode by
pressing BREAK. (The hex-to-decimal converter of Section 2 is similar to thi~
HicroHind routine.)

DH (Decimal-to-Hex conversion)
This conversion works like the HD above, except that now you will enter &

decimal number or up to five digits, and the response will be its hex
equivalent. (In e1 ther type of converaion, if MicroMind can• t decipher your
input, it will simply ask for it again.)

Page 37

--Y, symbolic Disassembly and Transfer (Intesral MigroHind Only)

SD (Symbolic Disassembly)
When you assemble-to-memory a program in Instant Assembler• a source butter

and then use (integral) MicroHind either to step through it or to disassemble
it, you • ight want to aee the disassembled instructions with labels, symbols,
character conatanta, etc. -- exactly aa they would appear in a liating or the
source code. To do so, enter the SD command before beginning to atep or
disassemble.

Duri~g symbolic disassembly (or stepping), ir an instruction 1e encountered
that does not agree with its counterpart in the source code, the actual
instruction in memory is the one that will be diaasaeabled and displayed. (This
could happen because or a memory change, tor instance.)

AD (Absolute Disassembly)
The AD command is used to switch back to normal disassembly atter you have

had enough of symbolic disassembly. (You can switch back and forth between the
two as often as you like.) Whenever you enter MicroHind with the HD command
(from the assembler), the absolute disassembly mode will be in effect.

IA (transfer to Instant Assembler)
Use the IA command to transfer control to the assembler aubayatem.

~.s, Tape and Printer commands cstand-Alone MigroMind only)

TP (TaPe)
The TP command allows you to record a 500 baud machine language program (in

SYSTEM format) on cassette tape. You may use it to make an object tape ot any
machine language program that ia in memory. After you have entered the TP
command, MicroHind will request a "FIRST ADDRESS?•. This is the loweat memory
address or the program that you wish to record, and it • ay be entered 1n either
decimal or hex. Next, you will be asked tor a •FINAL ADDRESS?•. Enter the last
memory address or the program to be recorded. You will then be aaked for an
"ENTRY ADDRESS?•, which is the address at which execution of the machine
language program ia to start when later it is loaded with the SYSTEM command.
Finally, MicroHind will request a "TITLE?•; type in any name ot aix or fewer
characters. (First character must be a letter, subsequent characters either
letters or digits.) Have the tape correctly positioned in the recorder, with
the RECORD and PLAY keys depressed; aa soon as 1ou t1pe the t1 tle and pres a
ENTER, the recording will commence.

VF (Ver1Fy)
The VF command allows you to verify a 500 baud machine language tape that

you have Just recorded with the TP command. Rewind the tape to the beginning of
the recordC:id sepent and type "VF" 1 n response to the •• • prompt. Press the
PLAY key on t.he recorder, and HicroHind will try to verify the recording. If
anything is wrong, •BAD" will be displayed, and you may re-record the program

PagE: 38

and try again to verify it. If the recording is all right, •GOOD• will be
di~played when the verification is complete.

DP (Diaaaeemble and Print)
The DP comand allowa you to print a d1aassembled liating of any Mpent of

2-80 code in ROH or RAM. Arter entering the DP command, you will be asked for a
•FIRST ADDRF.SS?• and a •FINAL ADDRF.SS?r. (These are, of courae, the first and
last addreaaea ot the block of code that you viah to diusaeable.) Enter these
addr•••• in either deciaal or hex. Have your line printer turned on and ready.
When the FINAL ADDRESS haJ been entered, printing vill commence and vill
continue Wltil this addreas baa been reached or exceeded, or until you depress
the BREAK key to atop the operation.

Page 39

SECTION 5, IXAHPLE OF HICRQMINQ IN ACTION

The goal or this section is to encourage you to become familiar with
H1croH1nd by practicing its operations on the hex-to-decimal conversion program
that you composed with Instant Assembler in Section 2. To that end, a program
ot action is described, but detailed instructions tor carrying out all or the
steps are not given; refer to the explanations or Section - tor any required
additional help.

Load and run Instant Assembler. Use the IN command to load the HDCOHV/SRC
tile that you recorded with the directions or Section 2. Assemble-to-memory
(with the AH command), giving the program an origin or 9000 (which is hex). If
you have a printer, make a listing ot the assembled program with the PC
command; this will help in following the steps outlined below. How transfer to
HioroMind; the command for this is •HD•. Enter the SP comaand and an address or
9000. You are ready to commence stepping through the hex-to-decimal converter.

For a tirat run, a blank screen will allow you to follow the bighlighta or
the action. Enter the BO command, and the acreen will be cleared except for the
CALL 1C9H instruction displayed at the lower left corner. Press the X key to
execute this subroutine. Then press ENTER three times to step through the
instructions at 9003, 9006, and 9009. Type •x• to execute the video output
routine called at 900C, and the program title will appear on the screen. Pre~s
the X key twice more to execute the next two subroutines, which merely move the
screen display line down. Then step through the instruction at 9015, and type
•x• to execute the next subroutine, which will display the •HEX#?• prompt.
Presa the X key again, and the cursor will appear; you are now in the input
routine. Enter a hex number of four digits, and you will be back in HicroHind,
ready to step through the instruction at 901E. Continue stepping - using the X
key to execute each CALL that you encounter -- until the decimal equivalent of
your hex entry has appeared, and the instruction at 9012 has been fetched
again. (Do not be alarmed if the hex number appears to be converted
incorrectly. HicroHind uses the ROH conversion facility for its own purposes
between the actual hex conversion and its display.)

Press the X key to execute the subroutine called at 9012, and step through
the instruction at 9015. Now, instead of executing the video output routine
called at 9018, press ENTER to step through the CALL, then press the S key to
fast-step until the instruction at 9071 (CALL 33AH) is reached. Use the X key
to execute this subroutine, then fast-step (with the S key) until you return to
9071. Continue in this fashion, using the X key each time you reach the
instruction at 9071. You should see the •HEXI?" query take form on the screen
one character at a time. When this has occurred, press BREAK to return to SP
mode.

Now enter the SP command again, with an address of 9003. Enter the RN
command, giving a FINAL ADDRF.SS of 901B. HicroHind will then fast-step (with a
blank screen) until the CALL to the keyboard input routine is fetched, at which
point it will terminate the stepping. During this run you should see the
program title and the wHEXI?" pro~pt appear slowly on the screen. Use the BREAK
key to return to SP mode.

Before stepping again, enter the SD command so that you can see the labels
and symbols of the fetched instructions. Then enter the SP command once more,
wit.h an address of 9003. Ster, through the progra111 with full register displays;
uso the EHTER key to fetch each in:itruction, and also to execute it -- unless
it ia a CALL, in which case use the XC command to execute the subroutine as a
whole. Note that lhe screen displays of the hex-to-decimal converter will now
flash and be gone; HicroHir,d needs the screen for its own displays. (Don't be

Page 40

alarmed if there is a bit of residue from the converter display, or if the two
displays are sometimes intermixed.) When you execute the keyboard input routin~
(called by tt1e instruction at 901B), however, you will be able to see your
input until the fourth digit is entered. That is because MicroHind is suspended
while the input subroutine is executing. In stepping wilh full register
displays, proceed very deliberately, observing how the registers are affected
by each instruction.

It ia Ulu111nat1 ng to step thro-ugh the program again with a alight
• ocUtication along the way. Enter the SP command and an address or 900·0.
Execute (IC) tbe instruction at 9000, and step through the instruction at 9003.
Nov uae the RG co111Dand to change the contents of the HL regiater pair to 3Etl&.
Exit trom RG mode v1th the BREAK key, enter the BD command, and continue
stepping (using the X key to execute all CALLS.) The eftect of the register
cbanae is to aove the initial display halt way down the screen. Vben you have
observed thia, press the BREAK key.

As a final exerciae, uae the BX command to set a breakpoint at 90AE. (This
1a inside the keyboard input routine.) Than use the JP com• and to tranater
control to 9000. Tbe hex-to-decimal converter will now execute without external
support. However, as aoon aa you enter a first cbaracter in response to the
•HEif?• prompt, the breakpoint will take etrect, and M1croMind will be in
control again. Nov enter the SB command, and you can atep through tbe
proceaaina ot thia input character. It you wan.t to aee bow ditferent input
characters are proceaaed, you can rei ni t1al1ze the SP aode vith an address ot
90AE, then uae the BO ooa• and to enter a character directly into the A
regiater. (You might put zero into the BC register at the aame ti•• to avoid
bu• ping up aaainat the field limit or tour characters.) Step troa tbia point,
and you will be able to observe the handling of the character. Thia last
prooedure sbovs bow easy it is to back up -- or advance -- the stepping process
by simply reinitializing the SP • ode; frequently thia needa to be aocoapanied
by uae or the RG command to aet the registers right tor the new starting point.
Be warned, however, that reinitializing SP mode alao reinitializes the stack
pointer, so that any data or return address on the stack will be teaporarily
lost; it you wiah, you can use the RG command to reset the stack pointer to ita
previous value.

It should be evident that, in the process or single--stepping through a
program, Jou will almost surely discover any error that exiata. It the program
resides in Instant Assembler•a source buffer, it is a siaple aatter to tranafer
to Instant Assembler (with •1A•), correct the error in the source code,
assemble-to-memory again, and return to MicroMind (with •HD") to continue
debugging.

Page 41

SECTION 6, INSIDE HICROIUHD

Herein 1a a collection of tips on the use or HicroHind.
(1) Stand-alone HicroHind is relocatable. When you run this program from

DOS, the title •RELOCATOR• is displayed, and you are asked tor a •STARTING
ADDRESS?• for the relocation. If you are satisfied with the location of
MicroHind as 1 t 1a loaded from the disk, press the BREAK key; you will then be
in HicroMind. If you want to relocate, enter a suitable starting address. Arter
the relocation (which takes about tour seconds), the relocator will report the
FIRST ADDRESS, the FINAL ADDRESS, and the ENTRY ADDRESS for the relooated
program; theae addresses may be used to make a recording of the relocated
program. (Thia reoording can be made with the 00 command ot one of the Linking
Loaders. See Section 7 tor directions on how to do it.) Atter these addresaes
have been displayed, control is passed to (old) M1croHind; you can use the JP
instruction to transfer to the relocated HicroKind. To help you judge whether
to relocate HicroHind, as well aa what the starting address should be, the
following information is supplied: Stand-alone HicreMind is about 1100 (hex)
bytes long. As 1·t comes off the disk, it occupies memory from about !FOO (hex)
to exactly BFFF (hex). The relocator will not permit an overlapping relocation,
a relocation below 5200 (hex), or one above FFFF (hex).

(2) A leading zero (or zeroes) is required when entering a decimal address
or leas than five digits; otherwise, HicroHind will treat the entry as a
hexadecimal address. Also, when using the FN command to search for a two-byte
hex number whose value is less than 100H, a leadine zero will be necessary to
tell H1croH1nd that it 1 s a two-byte number (rather than a single byte) that
you are searching tor; it your two-byte search number ia leas than 10H, two
leading zeroes will be required. Note that the •H• prefix is never required (or
ever. allowed) for hexadecimal numbers.

(3) Each HicroHind query has a strict limit on the number of characters
that. can b entered in response. In all cases except tor the •TITLE?• query,
when thia limit has been reached, the entry is complete, and the subsequent
action 1a immediately triggered.

(~) The BREAK key allows you to escape from any mode except SP mode. In SP
mode, BREAK merely clears the left side of the screen.

(5) If HicroMind cannot recogni2e your response to a prompt or query, it
repeats that prompt or query.

(6) M1croMind accepts no space ir1 its input, because none is needed in any
or the formal responses to its queries.

(7) Use of other commands will not confuse the stepping process. KicroMind
will never forget where it is in the stepping process until you do a JP, CL,
IA, SB, or another SP, and exitinc from any of the other commands will
automatically return you to where you were in SP mode.

(8) To view all the registers at once, enter t.he SP command to call up a
tull register display. It isn't. necessary to do any stepping to uae this
feature.

(9) You can't directly 1ns1>ect the alternate register set. However, there
is no need to know what is in these registers unless your target program first
does an EXX (or EX AF,AF'), and later exchanges registers again. By
stepping through the first exchange, you will know what has been saved in the
alternate registers; HicroHind will not change their contents.

Page 112

(10) You can't easily change the contents or the Add/Subtract or the
Halt-Carry flags. By inspccti ng the AF register (in a full register display),
you can at least ascertain the state or these flags. It is highly unlikely thal
you will need to change that state.

(11) The P1 and P2 diaplays are updated after each use or the I-ti command to
change • eaory, and after each EXECUTE cycle in SP mode •

. (12) MioroHind initializes a stack for use or the target program; this
stack suffices for nearly all debugging. If your program must eet up its own
stack, be aure that it doea not employ any 1De1Dory that would interfere with the
operations ot MicroHind or (in the caoe or integral HioroH1nd) Instant
Aaaembler; the same remark applies to any storage areas that your progrua may
eatabliah. To avoid contaminating Instant Assembler, do not use any aeaory
looationa below tbe address given by Instant Assembler in its •1sT FREE HEH•
report when the AM c011111and is exercised.

(13) HioroHind will diaasaemble the undocumented inatructiona, vhich are
defined in it• (17) ot Section 3.

(11') In entering any couand or 1ntoraat1.on, you aay UN the LEFT ARROW key
to backspace and erase cbaractera.

Pag1:1 113

PART III, THE LINKING LOADERS

Linking Loader ia a machine language program that will load a modul~
produced with Inat.ant Assembler into any RU: location outside its own proe;ram
and storage areas. It will also load and link multiple modules. (The modules
that Linking Loader operates on arc the source code modules recorded with the
OS 0011111and or Instant. Assembler.) In addition, Linkinc Loader can record an
object tile ot the loaded program.

Linking Loader occupies approximately 3300 bytes at one end of RAM and
requires a certain amount of memOl'y (which is dynamically allocated as needed)
adjacent to its program area tor the storage of labels and their values. Object
code ia asaembled and placed in memory in real time (as the input file is
read), ao that no buffer apace is required for the code itself. In loading
mul t1 pl e aodulea, Linking Loader proceeda from the specified starting point
toward its own storage area. It will stop -- with an •OUT OF HEH• report -- if
it runs out of room. In a 32K RAH there should be.enough space to load a
multi-sepent program of at leant 16K bytes; the exact upper limit depends upon
the aizea or the individual modules. the number of cross references between
• odules. and even the order 1n which the modules are loaded.

Linking Loader is supplied 1n tvo versions. The Top.Down Loader resides in
low RAH and loads programs into high RAK, while the BottOl:l-Up Loader occupies
the top of RAH and loads programs into low RAM. As the names suggest. the
Top.Down Loader loads programs downward from a specified top address, and the
Bottom-Up Loader loads programs upward from a specified bottom address. The
Top-Down Loader has the tile name •DSKLLT/CMD•; its entry point is 5800H. Two
files on your program di.skette contain copies or the Bottom-Up Loader. The copy
in the tile •DSKLLB32/CHD• loads to the top of a 32K RAM and has an entry point
at OBFFBH; the copy in the file •DSKLLBJf8/CMD• loads to t.he top ot a 118K RAM
and has an entry point at OFFFBH.

SECTION 7, LINKING LOADER COMMANDS

Linking Loader has eight tw~letter commands. which are explained in this
section and summarized in Appendix 7. As in Instant Assembler and H1croM1nd,
entry of the second letter of each command triggers the response. The com=and
prompt is "I". The BREAK key can be used at any timf: except during input/output
to return to command level.

LD (LoaD and link source modules)
With Linking Loader running, answer the "f" prompt with "LD". Lir,king

Loader will respond with the legend "LOAD-•. After this, the sequences to be
followed differ slightly with the two versions of Linkine Loader.

(a) The 'l'op.l>own Loader will now announce •LAST FREE HEH: XXXX", where the
XXXX is either the top of memory (if this is the first module to be loaded), or
the last address preceding the last module loaded (if apother module has
already been loaded). You will then be asked for a •FILE NAHE?". Respond with
the file name of the modulf: that you want to load next. Linking Loader will
then ask for a "FINAL ADDRESS?". Answer this question with the memory address
of where you want the modulfl to end; pressing EHTER in response lo this GUery
sets thh, final address to the defaul l value, which is the value announced irt
the "LAST FREE MEM" report. In any case, Linking Loader will not accept a final

Page 411

address higher than the default value. After the file name and tinal addres!,;
have been entered, the file will be loaded and linked. If the load is error
tree, Linking Loader will report 110000• and then prompt you to load the n<:xt
module with tte same sequence or messages and queries as for the first module.
On thEI other hand, it a modul E: tails to load properly, Linlcinc Loader wU l
report •BAD• and then prompt you to try again to load this module by repeatinc
the sequence of messages and queries given above. Any disk read error will also
reaul t in an error message, toll owed by a prompt to trr again. The Top-Down
Loader will load successive modules into successively lower • emory areas,
though these are•s do not have to be contiguous. (To make them contiguous,
aerely press ENTER in response to the •FINAL ADDRESS?• query for each module
after the first.)

(b) The sequence for the Bottom-Up Loader is si• ilar, but with a few
differences. The report w1sT FREE t£H: XXXX" (instead or •LAST FREE t£M: XXXX")
ia iaaued before loading each module arter the first; the reported address 1&
one higher than the last address of the lest module loaded. (No report is
iasued tor the first module to be loaded.) Next, you will be asked for a •FILE
NAHE?". After entry of the rue name, you will be aaked for an "ORIGIN?"
(instead of a •FINAL ADDRESS?•). Answer this question with the meaory address
or where you want the module to start; pressing ENTER in reaponae to this query
(for any module after the first) sets the origin to the default value, which is
the value announced in the •1st FREE HEH• report. In any caae, Linking Loader
will not accept an origin lower than the default value. (There is no default
value tor the first modulei an origin arust be entered tOl' 1t.) After tbe tile
name and origin have been entered, loading and linking occur as with the
TOP-Down Loader; reports on the outco• e ot the load are also the aa111e as with
the Top..Down Loader. When the module has been successfully loaded, you will be
prompted to load the next module with the sequence or messages and queries
given above. The Bottom-Up Loader will load successive • odulea into
successively higher memory areas, vbich need not be contiguous. (To make them.
contiguous, merely press ENTER in response to the •ORIGIN?• request for each
module after the first.)

With either version of Linking Loader, after you have loaded the last
module. press the BREAK key vhen the next FILE NAME? is requested. At this
point Linking Loader will report all assembly errors that it discovered. This
error report has the following format:

INT ERRS: 001
EXT UNDEF S'YMBS: 002
&HULT &SRCE

Here, "INT ERRS" (for internal errors) gives the total or all errors
resulting troa undefined nonexternal sy~bols, relative Jwnps out ot range, and
rel~tive Jumps with targets that are labels defined externally (that is, not in
the same modules as the relative Jumps). Linking Loader will not try to link a
Jump of the last type even if it is within the allowed range of a relative
Jump. All of these internal errors should have been eliminated before the
modules were recorded; they could easily have been found and corrected via the
LI command.

•EXT UNDEF S'DtBS" gives the number of external symbol references that have
no corresponding labels to define t.bem. All these symbol• are then listed below
the count, eia;ht to a line. (If 12 or more lines of these symbols are to be
listed, Linking Loader will pause after each 12 lines; press ENTER to continue
the listing.) In the above example, •&HULT• and •&SRCE• ~hould have appeared as

Page !i5

labels 1n aoae module (or modules), but did not. It is also possible that these
represent misspellings of actual labels, in which case the LE command of
Instant Assembler can be very helpful in tracking them down. In any event, you
will have to correct these errors eventually.

There is one type of error that Linking Loader will not detect, and that is
an external label that appears in more than one module -- a doubly defined
external label. In supplying an address for an instruction that references such
a label, Linking Loader will use the latest defined value -- that is, the value
of the label in the most recently loaded module in which it appears. Thus, an
error of this type may or may not result in an actual error in the assembled
program. or course, the way to avoid the possibility of a real error of this
type is to uae each external label in only one module.

CL (Continue Loading and linking)
Occasionally you may terminate a link-loading operation before it has been

completed. One reason might be to see what external symbols remain undefined at
a particular point in the loading process. Another mi&ht be to check on the
values or ao• e external labels that have already been loaded; the SY c011111and,
explained below, can be used for this purpose. When you are ready to continue
loading, enter the CL co111.111and. Linking Loader will resume exactly as if there
had been no interruption.

SY (diaplay SY• bol values)
At any time atter terminating a load operation, you may use the SY co11111and

to learn the load address or any instruction with an external label. After••
SY", you will be aaked tor a "SYMBOL?". Respond with any external label in tbe
program that has been loaded. (It you name a nonexternal label, or one that.
does not exist in the program, Linking Loader will reply •BAD" and ask for the
symbol again.) Linking Loader will report the absolute memory address (in hex)
of the instruction at that label and then ask for another "SYMBOL?". You may
thus learn the memory addresses of as many external labels as you please. When
satisfied, press BREAK to return to command level.

PH (Print a load Hap)
The PM command allows you to print the memory addresses of all external

labels in a program that has been loaded. Have the printer turned on and ready.
The external labels and their values will be printed four to a line. This
listing is not in alphabetic order, though it is in approximately numeric
order. With the Top-Down Loader, the labels will be printed in generally
descending order, vhil e, with the Bottom-Up Loader, they will be printed in.
generally ascending order.

00 (Output Object file to disk)
With the 00 command you can make an object file of a program that you have

loaded and linked with Linking Loader, or record (on disk) any other machine
language program that is in memory. The recorded program is !n standard object
format, ready to be loaded and executed from DOS. A program can be recorded in
up to five noncontiguous sepents.

Page 1&6

After •1 oo•, Linking Loodcr will request a •FILE NAME?". Respond with tht:
name you have chosen for t.he object file. Linki n~ Loader wU l then say •sECt-11-:N1"
1: • and follow this wit.h a rcquc~l for ,1 •FJHST ADDRESS?•. This iu I.ht: lowc:;t
addres:1 or the program that you wish to record, and 1 t aay be ent4:red in ei th~r·
decimal or hex (as explained in Appendix 5). There is also a default option
ava$1able for thia address: If you are recording a program that you have just
loaded with Linking Loader, you may press ENTER in response to the •FIRST
ADDRESS?• query, and the correct beginning address will be automatically
aupplied. Next, Linking Loader will request a •FINAL ADDRESS?•. Thia is the
laat • eaory address of the first (perhaps only) aepent ot the progr• to be
recorded, and it • ay be en,ered in either deci• al or bex. Again, there ia a
detaul t option tor this address: It you are reoording a program that you have
Just loaded with Linking Loader, you aay presa DTER in response to the •FINAL
ADDRESS?• query, and the end address (tor the complete progru) will be
aut011atically supplied. (It you are recording the progr• in several aepenta,
do not use this default option.) After the first and final addreaaes have been
entered, Linking Loader will aak tor ar, •EHTRY ADDRESS?•, wbich is the address
at which execution of the machine language program is to start when later it is
called troa DOS. An address must be entered here (in either decimal or hex)
even if 1t is meaningless.

After the addresses for Segment 1 have been entered, Linking Loader will
ask for first and final addresses tor Segment 2 1 Sepent 3, Sepent J&, Sepent
5. To ter11inate this request sequence, press ENTER in response to the •FIRST
ADDRESS?• query tor any segment after the tirat. When all aepent addresses
have been entered. DOS will be asked to open the tile. Depending upon the
outcome of this request, Linkin& Loader will report •NEW FILE.• (followed by
transfer ot the object code to disk) or "FILE REWRITE. PROCEED (Y/N)?• (which
means that a tile with this name already exists). In the latter case you then
have a choice of continuing or aborting the operation.

It you change any of Instant Assembler's progra• paraaetera (using the
information in Appendix 6) and wish to record the • oditied _progru, use the 00
command of the Bott.om-Up Loader. The FIRST ADDRESS for this recording is seoo
(hex). The FINAL ADDRESS can be found by looking into • e• ory locations
5806H-5B0?H when Instant Assembler is in memory. (R•ember that 5B07H contains
the high-order byte of. this address.) The DITRY ADDRESS is also 5800 (hex). Use
only one sepent tor the recording.

The 00 command may also be used to record a relocated version of
stand-alond MicroHind . The addresses for this recording are displayed by the
relocator at the time of the relocation. If HicroMind is relocated to high RA•:,
use the Top-Down Loader for the recording; if MicroHind is relocated to low
RAH, use the Bot tom-- Up Loader.

TP (record object code on TaPe)
With the TP command you can make a 500 baud object. tape or a program th~t

you have loaded and linked with Linking Loader, or record (on tape) any other
machine language program that. is in memory. The recorded prouam ia in standard
object format, ready to be loaded and executed with the SYSTEM coamand of Level
II. A program can be recorded in up to five noncontiguous segments.

After •1 TP•, Linking Loader will ask for a •TITLE?•; type in any name of
six or fewer characters. Following this entry, Linking Loader will request
addresses fort.he program segments exactly as explained under the 00 command
above. Arter all addresses have been enter~d, recorditl£ will commence. Have the
cassette recorder turned on, with the PLAY and RECORD keys depressed.

Page Ji7

VF (VeriFy an object tape)
The VF co•• and allows you to verity a 500 baud machine language tape that

you have juat recorded with the TP co1111and. Rewind the tape to the beginning of
the recorded program and type "VF• in response to the •1• prompt. Linking
Loader will i•ediately try to verity the recording, so press the PLAY key on
the recorder. It anything ia wrong, •BAD• will be displayed, and you may adjust
the volume oontrol or re-record the progr• and try again to verity it. It the
recording 1a all right, •GOOD• will be displayed when the verification 1a
complete.

JP (JumP)
The JP c01111and permits tranafer of control to any point in memory. After

you have entered thia oomand, you will be asked for an •ADDRESS?•. Enter this
in either decimal or hex, and the jump will be taken to that address.

PagE: 118

~ECTION 8. EXAMPLE Of LINKING LQAPI;;B IN ACTIOH

In this final section you will use the two veraions or Linking Loader to
load and link the three-segment hex-to-decimal conversion program that you
constructed in Section 2. The first part of that program calls subroutines in
each or the other two parts; thus, Linking Loader will need to determine the
addreaaea or those subroutines as it loads them and then plug those addresses
into the calling instructions or Part 1 or the program.

Load and run the Top-Down Loader. Enter the LD coumand and type in
•HDCNY3/SRC• in anawer to the •FILE NAHE?• query. For a FINAL ADDRESS, enter
9001. (Be sure the diskette with the hex-to-decimal converter source files is
• ounted.) Part 3 will then be loaded, and Linking Loader will request another
tile name. Respond with •HDCNV2/SRC•, and preaa ENTER in answer to the •FINAL
ADDRESS?• query. Part 2 will then be loaded, and Linking Loader will request
another tile name. Respond with •HDCHV1/SRC•, and preaa ENTER in answer to the
•FINAL ADDRESS?• query. Part 1 will then be loaded and linked. (The three
modules will be loaded contiguously because you used the ENTER key to enter
detault t1nal addresses for Parta 2 and 1.) Now press the BREAK key when
Linking Loader asks tor another tile naae. The error report that appears should
ahow no errors. Enter the SY command, and type •&BEGIN•. L1nk1na Loader will
then announce the memory address of the first instruction of the hex-to-decimal
converter; this address should be 9000. You now see the reason tor using an
external label at the entry point of the converter; although &BEGIN ia not.
referenced by either Part 2 or Part 3 or the program, it aay be referenced by
the Linking Loader. Linking Loader cannot give you the value of any nonexternal
label. Now press BREAK to return to command level. If you wiah, you may use the
PH comand to print a load map or your hex-to-decimal converter.

Enter .the JP command, and transfer control to the converter (JP to 9000).
After aatistying yourself that the program has been properly loaded and linked,
use the CLEAR key to return to DOS.

The program that you have Just loaded could have been located in any region
or memory above the To1>-Down Loader; you aight wish to reload it into another
area. (You could even load the three parts noncont1guously, by entering actual
FINAL ADDRESSES tor all three parts during the loading.) Also, the three
modulea can be loaded in any order; you might want to repeat the
linkage-loading procedure with a different order or loading. However, it is
frequently true in top-down loading that one module defines the end of a
storage area or indeterminate size that lies below the program areai in such a
case, care must be exercised to insure that this module is the last one loaded.
There are also circumstances in which one particular module must be the first
one loaded. The main tact to keep in mind is that -- 1n top-down loading -­
successive modules are loaded into successively lover regions of memory. (lt.
doe:s not follow, though, that a single module is loaded from higher to lower
addresses; indeed, the reverse is true.)

Now is the ti•e to load and run the Bottom-Up Loader. Enter the LD command,
followed by a FILE NAME or •HDCNV1/SRc•. Oive an ORIGIN ot 9000. After Part 1
has been loaded, load Parta 2 and 3. (Any other order would work as well.)
Terminate the loading process with the BREAK key. Again the error report should
ahow no errors. Use the SY command to learn the entry point address (the value
or &BEGIN). Transfer to this entry point with the JP co• mand, and finally
return to DOS (from the converter) by pressing the CLEAR key.

In bottom-up loading, successive modules are loaded into successively
higher memory locations; keep this fact in mind if the successful operation of
the total program is dependent upon the rel&tive position~ of the segments in

Page Jig

aemory. it. should also be clear that, the lower you aet t.be origin for the
load, the • ore memory apace there will be tor the prograa that you are loading.

Page 50

AttEfU2IX] 1 LEGAL I~STHU'-IlQU~ fQH JNSTAUI ~2...J
ADC A,a DJNZ e JP nn LD R,A PUSH IX
ADC HL,as EI JR c, e LD r,11 PUSH IY
ADD A,a EQU n3 JR NC,e LD r,n PUSH qq
ADD HL,aa EX (SP), Ill. JR NZ, e LD SP, HL RES b,11
ADD IX,pp EX (SP),JX JR Z,e LD SP, IX . BET
ADD IY,rr EX (SP), lY JR e LD SP, JY
AND s EX AF,AF 1 LD (BC),A LD ss,(nn)
BIT b,a EX DE,HL LD (DE),A LD as,nn
CALL co,nn EXX LD (HL),n LJ> u, X

CALL nn HALT LD (HL),r LD x,n
CCF IH O LD (IX+d),n LD x,u
CP a IH ·1 LD (IX+d), r LD x,x•
CPD IH 2 LD (IY+d),n LDD
CPDR IN A, n2 LD (IY+d) ,r LDDR
CPI IN r, (C) LD (nn),A LDI
CPIR INC IX LD (nn),IX LDIR
CPL INC IY LD (nn),IY NEG
DAA 'INC m LD (nn),ss NOP
DEC 11 INC ss LD A,(BC) OR s
DEC IY INC x LD A,(DE) OTDR
DEC • IND LD A,l OTIR
DEC aa INDR LD A,(nn) OUT (C),r
DEC X INI LD A,R OUT n2,A
DEFB n INIR LD I,A OUTD
DEFM •cs• JP (HL) LD IX,(nn) OUTI
DEFS nl JP (IX) LD IX,nn POP IX
DEFW M JP (IY) LD IY,(nn) POP lY
DI JP cc, nn LD IY,nn POP QQ

Poecand Notation
b represents a number in the range or Oto 7.
d repesents a one-byte number in the range of •128 to 127.

BET oo
RETI
RETH
RL ID

RLJ
RLC ll
RLCA
RLD
RR ll
BRA
RRC 11

RRCA
RRD
RST p
SBC A,s
SBC HL,.ss
SO'
SET b,a
SLA 11

SRA II
SRL ID

SUB a
XOR s

e represents a symbolic address w1t.h1n relative range (-126 to 129).
n represents any one-byte number or character constant.
n1 represents a number in the range of 1 to •095.
n2 represents a number in the range ot Oto 255.
n3 represents a number in the range of Oto 65535.
p represents one of t.he following: O, 8, 1 OH, 1 BH, 20H, 28H, 30H, 38H.
r represents any or the following registers: A, B, c, D, E, H, L.
m represents either r, (HL), (IX+d), or (IY+d).
u represents any or the following registers: A, B, C, D, E.
x represents any of the half•index repaters: IXH, In, IYH, IYL.
x• represents any of the half-index registers IXH, IXL, IYH, IYL, with

t.he restriction that x and x• must be halves of the same register.
s represents either r, n, (HL), (IX+d), (IJ+d), or x.
nn represents a two-byte number or address; it may be a Sfmbol.
cs represents an ASCII string or not. more than ~3 characters.
cc represents any or these conditions: NZ, z, NC, c, PO, PE, P, H.
pp represents any of these 16•b1t registers: BC, DE, IX, SP.
qq represents any or these 16-bit registers: AF, BC, DE, HL.
rr represents any of these 16-bit r6giaters: BC, DE, IY, SP.
ss represents any of these 16-bit registers: BC, DE, HL, SP.

Page 51

APPENDIX 2, SUMMARY OF ASSEMBLER COMMANDS

COMPOSING ANO EDITING
CP -- ComPose source code
ED -- ED1t lines of source code
CC -- Continue Composing

INSERTING, DELETING, MOVING
IS -- InSert lines of source code
DL -- Delete one Line of source code
DH -- Delete Multiple lines or source code
HB -- Hove a Block of source code

LISTING
LC -- List Completely (to the screen)
PC -- Print a Complete listing
LL -- List to the Last line (trom a specified start!ng line)
PL -- Print (a listing) to the Last line
PR -- Print a Range or lines
LI -- List Internal errors
PI -- Print Internal errors
LE -- List External undefined symbols
PE -- Print External undefined symbols
LS -- List the Symbol table
PS -- Print the Symbol table

TAPE INPUT/OOTPUT
WS -- Write Source code to tape
VS -- Verify Source code
RS -- ~ead Source code from tape
WO -- Write Object code to tape
WE -- Write Edtasm source code to tape
RE -- Read Edtasm source, translate, and merge

DISK INPUT/OUTPUT
OS -- Output Source code to disk
IN -- INput source code from disk
HG -- HerGe source code from disk
00 -- Output Object code to disk
OE -- Output Edtaam source code to disk
IE -- Input Edtaam source, translate, and merge

•flSCELLANEOUS

AM -­
RO --
FR -­
DI --
KL -­
EX

Assemble-to-Memory
Reset Origin
Find all References
Directory display
Kill a file
EXit to DOS

to a specified symbol

HD -- transfer to microMinD

Page 52

APPENDIX 3, SOURCE CODE ENTRY

EXAMPLES: (Numbers in parentheses below exampl~s refer tot.he notes.)

(a) Instruction line:

00115 &EtlT2 LD A, (HL) ·;GET CHARACTER
(1) (2) (3)(-)(3) (5) (6) (7) (8)

(b) CCIUent line:

0123 ;The next routine converts numeric input.
(1) (7) (8)

NOT&S:

(1) Four-digit line nuaber and tollowing apace are provided by Instant
Asaeabler.

(2) Label ia optional and ia limited to six alphanumeric characters, except
that the first character aay be an •persand to indicate an external label. (If
tirat character entered ia a aemicolon, line will be converted to a coa• ent
line.)

(3) Tab (RIGHT ARROW) to the next field.

(-) Opcode 1a aandatory tor standard line and is limited to four alphabetic
characters.

(5) Enter necessary operand or operands in this field. It two operands are
required, separate them with a COllll8. Do not use spaces in the operands (except
for a character constant).

(6) Spaces preceding the on-line comment are optional.

(7) The semicolon 1s required to indicate that a comment·follows. Note that
in a comment line the starting .semicolon cannot be erased except by use ot
SHIFT-LEFT ARROW.

(8) Comments are tree form. Lower case may be used in the Hodel III. No
on-line comment is permitted following a DEFH pseudo-instruction.

COMPLETION HODES:

SHIFT-LEFT ARROW -- erase thia line and start fresh with the sa11e

BREAK
ENTER

line number.
abort this line and
normal end or line;
error-tree) entered

Page 53

return to comand level.
line is checked and (it

into source buffer.

APPENDIX~. EDITING PRQCBDQfiES

The ED, LI, and FR commands provide direct editing racilities. The CP, CC,
and IS comands permit editing while entering a line; they also lead to editing
1r the entered line has a detectable error.

LINE LEVEL:

ED 00111and only:
UP ARROW
J)

I

ED, LI, FR commands:
DOWN AfcRa.l
DTER
C

Display previous line.
Delete displayed line.

-- Insert new line before displayed line.

Display next line.
Same as DOWN ARROI.
Descend to cursor level to edit line.

CURSOR LEVEL (ED, LI, FR, CP, CC, IS):

SPACE -- Hove cursor s-ight one apace without erasing.
LEFT ARROW
RIGHT ARROW

Uove cursor left one apace without erasing.
Tab to next field; it that field ia empty,
descend to edit level, X mode.

SHIFT-I)
SHI"•l
SHIFT-C
SHin-H

-- Delete character at the cursor.

SHIFT-I

SHIFT-LEFT ARROW -­
F.NTER
BREAK

Descend to edit level to insert characters.
Descend to edit level to change characters.
Delete characters to end of field; descend
to edit level to enter characters.
Tab to end of field; descend to edit level
to enter characters
Erase entire line and start over.
tlormal termination or editing.
Same as EtlTER, if used with ED, LI, or FR.
Abort, if used with CP, CC, or IS.

A one- or two-digit number (n) typed just before SPACE, LEFT .AJIROW, or
SHIFT-D extends the effect or each key over n characters.

EDIT LEVEL (ED, LI, FR, CP, CC, IS):
A character typed at this level is entered into the source line, provided

that it 1a legal for the field or entry.

LEFT ARROW Backspace without erasing in I or C mode.
Backspace and erase in Hor X mode.

RIGHT ARROW Tab to next field; if that field is not
empty, return to cursor level.

DOWN ARROW or SHIFT-UP ARROW -- Return to cursor level.
SHIFT-LEFT ARROW. ENTER, or BREAK -- All have the same effect at

edit level as they have at cursor level.

Page 5Jt

APPEtrn1x 5. ENTt;HlNG LlNI; WJWt:R~ AHD ADDRE;.5SF,S

LitlE NUtt3ERS:

(1) Decimal: Enter tour or fewer decimal digits.
(2) Label plus orrset: Enter the label of any line in the program. This

label may alao have a decimal offset 1n the range of -31 to +99.
(3) Current line: Enter•.• (period) to request the current line. Type UP

ARROW to request the line preceding the current line. Type DOWN ARROW to
request the line following the current line.

How the current line number is maintained:
(a) It is initialized at 1 when Inatant Asseabler 1a loaded.
(b) Whenever source code 1a displayed on the screen, the current line

pointer ia updated to the number or the lut displayed line. Exception: When a
line that is being entered (with the CP, CC, or IS couand) 1a aborted with the
BREAk key, the current line Pointer 1a not updated to the number ot that line.

(o) When the CC oo•and is entered, the current line Pointer ia set to the
number or the last line in the source butter.

(d) Use or the UP ABROW to enter a line number not only aelecta the line
before the current line, but also resets tbe curreat line pointer to tbe nuaber
of the aelect.ed line. Sillilarly tor DOWN AfiR(Jf.

(e) Printing and block mov•ent bav• no effect on the current line.

ADDRESSES:

(1) Hexadecimal: Enter tour or fewer hex digita. Do not type a zero before a
leading A, B, c, D, E, or F. J>o not type •a• at tbe end ot tbe entry. (NOTE:
This rule ia tor addresses entered in answer to a quer1; hex numbers entered in
source code must have both the leading zero and the terminating H.)

(2) Decimal: Enter five (no fewer) deoiaal digits. It necessary, pad with
leading zeroes to make the total or five digits.

ORIGillS AND EHTJiY ADDRESSES:

Besides the two methods given above for all addresses, or1,1ns and entry
addresses tor Ir.st ant. Assembler can be entered as def aw. t values by simply
pressing ENTER. The default value is the last origin set with th~ RO command,
which ia also the origin that a~pc·ar~ when the program is listed with the LC
co111111and.

Pagt: 55

SAFEH - SAFFH (Top of memory) Computed whenever Instant Asaembler is entered
at SBOOH. You may set this value to protect other programs in high RAJ.I.
Subsequently, use the reent~y point at 5B03H to avoid destroying the
protection.

Changes in any of the parameters below may be &ade permanent by using the
Bottom-Up Linking Loader to record the modified Instant Aaaembler, aa detailed
under the 00 command of SEction 7.

5808H (Directory option flag) Comes set at zero tor Hodel III TR~DOS. Set
to 1 for NEWDOS 80 or Hodel III LDOS 5.1. Set to 2 for DOSPLUS 3 •••

5809H (Number of spaces of indentation in printed listings) Comes set at 8.
It you set bit 7 (the 80H bit) of this number, you can obtain source-only
listings. These 11st1 ngs will UH' 18 rewf'r s,ri nt col Uliins than t.h& nt.1cber you
put in SBOAH.

SBOAH (Number or print columns) Comes set at 72; must be set at a nuaber
from 64 to 98, or to 105. (A setting or 105 guarantees that no instruction will
take more than a single line.) This number plus the number in 5B09H should not
exceed the column capacity or your printer. (Exception: If bit 7 or location
5B09H ia aet, the aum of these two numbers can be up to 18 greater than your
printer's column limit.)

5BOBH (Number ot printed lines per page of listing) Comes set at 59.

SBOCH (Total number of lines per page) Comes set at 66. It this number is
greater than the number in 5BOBH, the difference will be the number of copies
or the character in SBODH transmitted at the end of each page. If SBOCH is set
to 1, only one copy or the character in 5BODH will be sent after each page.

SBODH (Line feed or form feed character) Comes set at OAH, which is normally
sent several times at the end of each page. If you change SBOCH to 1, put a
form teed in 5BODH.

SBOEH (Carriage return character or flag) Comes aet at ODH, which is
transmitted at the end or each line. If 5B09H - SBOAH are Jointly set to
transmit full lines to your printer, and if your printer doesn't require a
carriage return in this case, then store a zero in 5BOEH. A zero here will not
be transmitted.

SBOFH - 5B14H (Custom print formatting bytes) Come set at all zeroes. Any
characters yo~ store here (up to the first zero byte, which will not be
transmitted) will be sent to your printer at the start of each line. Thus, you
can program compressed format, double strike, eta., if your printer permits.

5B15H (EDTASH source format flag) Comes set at 1 for recording six spaces at
the beginning of an EDTASM source file. Set to Oto suppress this dummy title.

Page 56

APPEHIHX 7. SUMMARY PE HICHOHIND AND LINKING LOADER COMMANDS

HICROHIND

~TEPPING, BREAKPOIHTIHG, AND EXECUTIHG
SP•- SteP
BD •• Blank Display
BK - BreaKpoint
SB -- Step from Breakpoint
CL -- CalL

REGISTER AND MEMORY DISPLAY
RG -- ReGiater display and change
AS•• ASc11 display
P2 -- Page 2

UTILITIES
FN -- Find Humber
HD -- Hex-to-Decimal conversion

XC -- execute
RN -- RuN
RB -- Restore Breakpoint
JP -- JuaP

tfi -- HeHory display and change
P1 -- Page 1

DS -- DiSaasemble
DH -- Decimal-to-Hex conversion

SYMBOLIC DISASSEMBLY AND TRANSFER (Integral HicroHind Only)
SD -- Syabolic Disiasaembly AD -- Absolute Diaaaaeably
IA -- transfer to Instant Assembler

TAPE AND PRINTER COMMANDS (Stand-Alone HicroHind Only)
TP -- TaPe VF -- VeriFy
DP -- Disassemble and Print

LINKING LOADER

LD -- LoaD and link source aodules
SY -- display SYmbol values
00 -- Output Object tile to disk
VF -- Ver1Fy an object tape

CL -- Continue Loading and linking
PH -- Print a load Hap
TP -- record object code on TaPe
JP -- JuaP

Page 57

APPENDIX 8. ADAPTING IP EDTASM

Since some or EDTASH's constructions are not recognized by Instant
Assembler, you may need to make some ad~ptations when copying programs from
magazines, because these generally assume the use or EDTASH. The key to success
is to·understand the tunction of each line or code that you are transcribing; a
functionally equivalent Instant.Assembler form is nearly always available. Some
suggest.ions for. these conversions have already been made in Section 3, items
11, 12, 13. In this appendix are more suggestions, illustrated by examples
culled trom the pages or •eo H1croC011puting• magazine. You may notice that many
or these examples are awkward constructions eved in EDTASH.

(1) The first set of augaeationa concerns the use of the symbol••• to mean
the address or the present instruction. Here are some examples:

(1 A) JR NZ, $+6
SUGGESTION: Put a label -- say •HERE• -- on the instruction at $+6, then change
the above line to JR NZ, HERE. To figure out where• $+6 is, you will need to
count the bytes of each instruction; start with the JR NZ,$+6, which counts
for two bytes. After you have counted six bytes worth or instructions, put the
label on the next. instruct.ion.

(1B) DJNZ $
SUGO&STION: Change this to TITELP DJNZ TITELP.

(1C) NOTU EQU $
CP 2AH

SUGGESTION: Replace these two lines with NOTU
served by the EQU here is to attach the label to
tollowing; thia can be done directly as suggested.

(1D) BOARDS DEFL $
END

CP 2 AH. The only purpose
the instruction in the line

SUGGESTION: Use BOARDS DEFS 1 instead. (Instant Assembler doesn't want the
END instruction.) In the actual program, BOARDS was a label defining the
beginning or a storage area.

(1E) SET O,(HL)
OPCODE EQU $-1

SUGGESTION: Use the following
DEFB OCBH

OPCODE DEFB OC6H

two lines instead:

(1F) ORG
DISKIO EQU

END
SUGGESTION: Use DISKIO

(10) GETCHR CALL
SUGGESTION: Use GETCHR

OFFOOH
$

i 1st byte of SET O,(HL)
;2nd byte

EQU OFFOOH instead.

$-$
CALL 0 inst.ead, since the value or$-$ is zero.

Page 58

(2) The second aet of suggestions concerns the uae of arithmetic oper~tor~
within operands. EDTASH is liberal in its acceptance or these, while Instant
Asseabler is not. Here are some examples:

(2A) XOR 128+6~
SUGGESTIOH: Uae XOR 192 instead.

(28) LD IX,3C3FH-l&0H
SUGGESTION: Uae LD IX,3BFFH. Figure out the arithmetic yourself.

(2C) LD (IX+.256-63) ~A
SUGGESTION: Use LI> (IX-63), A instead. Here we see a minor flaw ot EDTASM,
which will not accept LD (IX-63),A, though that is the intent or the example
instruction. Index register otfaeta tor EDTASH • ust be in the range ot Oto
255; a negative ottaet haa to be adjusted by adding 256 to it so that El>TASM
will accept it. Instant Assembler does this ~he right way.

(2D)
SUGGESTION : U ae
above.

(2E)
SUGGESTION: Use

LD (IX+OFFH),A
LD (IX-1),A instead, which 1s the correct form. See (2C)

LD HL,CARDIM-36
the following lines instead:

LD HL,CARDIH
PUSH BC
LD BC,-36
ADD HL,BC
POP BC

Thia • akes the program six bytea longer, which may have to be taken into
account when assigning the origin. Be aware that changing the length and origin
ot a publiahed program can alao artect entry point and storage area addreaaes.

(2F) LD BC,TRCTBE-TRCTAB-1
SUGGESTION: Use the following lines instead:

PUSH HL
LD HL,TRCTBE-1
LD BC, TRCTAB
OR A
SBC HL,BC
LD B,H
LD C,L
POP HL

Again, this makes the program 10 byt~s longer, which may have to be taken into
account when assigning the origin.

(2G)
SUGGFSTION: Use

LD HL,VIDE0..982
the following lines instead:

LD HL,VIDEO
PUSH BC
LD BC,982
ADD HL,BC
POP BC

Page 59

Six bytes are added to the code, which may have to be taken into account when
assigning the origin. In this particular exeuaple, VIDEO was EQUated to 3COOH.
so you could also have used the si• ple replacement line LD HL,3FD6H.

ADD A,BUFFER<-8 (2H)
SUGGESTION: Use the following ltnes instead:

PUSH. BC
LD BC,BUFFER
ADD A,B
POP BC

Once again, four bytes are added to the code, which may have to be taken into
account when assigning the origin. In this particular example, BUFFER was
EQUated to 6000H, so you could also have used the aimple replaceaent line ADD
A,60H.

(3) The third aet or suggestions concerns minor variations in the form of
operands. Here are some examples:

(3A) LD (DCB+OAH),HL
SUGGESTION: Use LD (DCB+10),HL instead. Instant Assembler requires symbol
offsets to be in decimal.

(3B) IN A,(OED-1)
OUT (OED-1),A

SUGGESTION: Uae IN A,OEEH and our OEEH,A instead. Instant Assembler
requires the 011iasion oft.he parentheses in these two instructions.

(3C) JD-IHN2: LD HL,STAHT
SUGGESTION: Use JEHHN2 LD HL,START instead. Instant Assembler does not
permit the colon in the label field.

(4) The fourth set of suggestions concerns the use or the DEFL pseudo-op
and an EQU with a symbolic operand. Here are some examples:

(4A) DCB DEFS 32H
EOF EQU DCB+8
ERN EQU DCB+12
NRN EQU DCB+10

SUGGESTION: Use the following lines instead:
DCB DEFS 8
EOF DEFS 2
NRN DEFS 2
ERN DEFS 38

This gives a total defined storage of 50 bytes and preserves the spacing of the
labels.

(-B) DSPDIR DEF1. 4-19H
SUGGESTION: Use DSPDIR EQU -~19H instead.

(-C) FBUF DEF1. 5200H
START DEn FBUF+32H
FINISH DEn START+2

Page 60

SUGGESTION: Use the following lineo instead:
FBUJ,' EQU 520011
START EQU 5232H
FINISH EQU 5231111

(5) The fifth set of suggestions concerns the u:;E: or symbols to repres~nl
8-bit (or aaller) operands. Here are some examples:

(SA) DEFB CR
SUOOESTION: Use DEFB ODH instead, since CR (tor •carriage return•) had the
value ODH in this example. (The value of the symbol can be determined from the
program listing; it is displayed to the left of the instruction.)

(5B) SET FLAG,(HL)
SUGGFSTION: Use SET n,(HL) instead, where n is the actual value of FLAG,
which is an EQUated symbol.

(SC) OUT (PORT1) 1 A
SUGGESTION: Uae the following linea instead:

DEF,B OD3H ;OUT instruction
DEFW PORT1 ;Port number

Thia coding lengthens the progr• by one byte, which 1a a NOP corresponding to
the zero in the high order byte ot the value of PORT1. Another solution is to
EQUate a two byte symbol to the entire instruction:

OUTP1 EQU 05D3H ;OUT PORT 5
The high order byte of OUTP1 ia the port number (05) and the low order byt,e 1 s.
the OUT instruction (03). When you want to use this instruction 1n your program
use OUTP1 as a DEFW:

DEFW OUTP1 ;OUT (PORT1),A
This coding does not lengthen the program.

(6) The aixth set or suggestions concerns the use of multiple origins. One
way to circumvent this difficulty ia to construct the program in multiple (up
to 5) aepenta and then load, link, and record it with Linking Loader (which
permits up to tive origins in the recording or the object code). This might
require making some labels external so that they can be referenced by other
modules. Another solution to the multiple origins problem applies when the
aepents are nearly contiguous: Place appropriate amounts of storage (usins the
DEFS pseudo-op) between segments, thus turning the whole into a single block or
code. A third solution may be feasible when some or thE: s~gsnents contain only a
Jump instruction. Here are some examples:

(6A) ORG 16 8011-1
JP LINE
ORO 16762-1
JP FIELD

Page 61

SUGGESTION: Instead or those lines, add the following code to the beginning of
the actual program:

LD A,OC3H
LD (16803),A
LD (16761).A
LD HL,LINE
LD (16804),HL
LD HL,FIELD
LD (16762),HL

This will make the program longer, of course.

(6B) ORG Jl1E2H
JP AUTO

SUGGESTION: Put th1a in a separate module and use Linking Loader to link and
record the total program. The reason tor a d1tterent treatment here is that the
lines shown have a special effect in a Hodel III tape maohine. They cause
auto-execution or the assembly language program when it ia loaded using the
SYSTEM command.

(6C) START EQU 7EAOH
ORG ST ART-10
LD HL,START
LD (.111 BFH) ,HL
JP 66H
ORG START

START CALL 1C9H
SUGGE.STION: Replace this mess with the following lines:

LD HL,START
LD (418Fll),HL
JP 66}1

START CALL 1C9H
To give START the value 7EAOH, use an origin of 7E97H.

Page 62

INDEX

Topics in this index are referred to not by page number, but by section
number and, usually, eittjer a command name or an item number (or both) within
the section. The specification •(intro)" refera to the introductory paragraph
(or paragraphs) of a section or part. EXAMPLES: 1.1 (CP, item -4) refer~ to the
fourth numbered item under the CP conmand in Section 1.1 1 while Part Ill
(in.tro) refers to the introductory paragraphs or Part Ill. Besides making it
easier to avoid errors in the index, this manner ot reference generally
pinpoints an item to within less than a printed page.

Alternate registecs: 6 Eitem 9)
Ampersand: 1.1 (CP, it• 1), 1.3 (LI), 3 (item 10), Appendix 3 (Note 2)
Assembly-to-memory: 1.6 (AH)

Backspace (LEFT ARROW): 1.1 (CP, items 1 and 11), 1.1 (ED), 6 (item 111),
Appendix II

Block • ovement: 1.2 (MB)
BREAK: 1.1 (CP, item 15), 1.1 (ED), 1.2 (IS), 1.3 (intro, LI),

1.11 (intro, RE), 1.5 (intro, Kl), 1.6 (FR), 3 (it•• 1, 5, 111),
4 (intro), 11.1 (SP, BD, RN, JP), 11.2 .(RG, HM, AS, P1),
11.3 (FN, DS, HJ)), 11.5 (DP), 6 (it.em 4), 7 (intro, LD, SY),
Appendix 3, Appendix•• Appendix 5

Breakpoints: 11.1 (BK, RB, SB)

Cancel (I, C, H, or X mode): 1.1 (ED), Appendix 4
Character constants: 1.1 (CP, item 8)
Change character: 1.1 (ED), App~ndix 4 directory option: Appendix 6

EDTASH source tormat: Appendix 6 line: 1.1 (ED), Appendix 4
memory: 4.2 (HM) origin: 1.1 (CP, item 5), 1.6 (RO)
print parameter: Appendix 6 register: 11.2 (RO)
top ot memory: Appendix 6

C mode: 1.1 (ED), Appendix 4
CODE ERASURE warning: 1.1 (CP), 1.4 (RS, RE), 1.5 (IN), 3 (1tem 14)
Command summaries: Appendix 2, Appendix 7
Comenta full line: 1.1 (CP, item 4), Appendix 3

on-line: 1.1 (CP, items 2, 3), Appendix 3
Conversions: 4.3 (HD, DH)
Current line: 1.1 (ED, CC), 1.2 (MB), 1.3 (intro), Appendix 5

Default addresses: 1.4 (WO), 7 (LD, 00), Appendix 5
Deletion character: 1.1 (ED), Appendix 4

line: 1.1 (ED), 1.2 (DL, DH), Appendix 4
Directory call: 1.6 (DI)
Disassembly absolute: 11.4 (AD) of undocumented instructions: 6 (item 13)

printed: 4.5 (DP) symbolic: 4.4 (SD)
Displays ASCII: 4~2 (AS) memory: 4.2 (HM)

page: 4.2 (P1, P2), 6 (item 11)
.register: lt.1 (SP, CL), 11.2 (RG, Ht-I), 6 (it• 8)

Doubly clef1ned label: 1.1 (CP, Hem 16) 1 3 (items 6, 10), 7 (LD)
DOWN ARROW key: 1.1 (ED), 1.3 (intro, LI), 1.6 (FR), 11.2 {HH, AS, P1),

4.3 (DS), Appendix 4, Appendix 5

Page 63

Editing procedure: 1.1 (ED), Appendix -
EDTASH adaptations and conversions: Appendix 8
EDTASH racilities: 1.- (WE, RE), 1.5 (OE, IE), Appendix 6
DD: 1.1 (CP, item 5), 1.3 (LC)
Entry ot addresses: 1.- (WO), -.1 (SP), Appendix 5

or commands: 1 (intro),~ (intro), 7 (intro)
or DEFB, DEFW, DEFH, DEFS: 1.1 (CP, item 9)
or line numbers: 1.1 (ED), Appendix 5
of source code: 1.1 (CP, CC), Appendix 3

Entry points Instant Assembler: 3 (item 19), 7 (00)
Linking Loaders: Part III (intro)

Erasure or line (SHIFT-LEFT ARROW): 1.1 (CP, items,, 1!1), 1.1 (ED),
1., (RE), 1.5 (tll), Appendix 3,
Appendix Ji

Error • easagea composed line: 1.1 (CP, item 16)
in link-loading: 7 (LD)
in liatinga: 1.3 (LC, LI)

Execution ot subroutines: ,.1 (XC, BD, CL)
External label: 1.1 (CP, item 1), 1.3 (LI, LE), 3 (item 10), Appendix 3

Fast-stepping: Ji.1 (SP, BD, RN)
FILE REWRITE warning: 1.5 (OS, 00, OE), 7 (00)
Find nuabers in • eaory: Ji.3 (FN) symbol references: 1.6 (FR)

symbol values: 7 (SY)
1ST FREE HEH report: 1.6 (AH), 7 (LD)
Flags: -.1 (SP), ,.2 (RG), 6 (item 10)

H mode: 1.1 (ED), Appendix Ji

I mode: 1.1 (ED), Appendix Ji
Implicit line numbering: 3· (item 2)
Insertion character: 1.1 (ED), Appendix JJ

line: 1.1 (ED), 1.2 (IS), Appendix J&

Internal errors: 1.3 (LI, Pl), 7 (LD)

Killing f11 ea: 1.6 (KL)

Label as substitute for line number: 1.1 (ED), Appendix 5
Label field: 1.1 (CP, item 1), Appendix 3
LAST FREE HEM report: 7 (LD)
Levels in editing (line, cursor, edit): 1.1 (ED), 1.3 (LI), 1.6 (FR),

Appendix J&

Listing control of: 1.3 (intro) format: 1.3 (intro)
or numeric constants: 3 (item 7)

Load map: 7 (PM)
Lower case (Model III): 1.1 (CP, items 2, 11), Appendix 3

Merging source files: 1.J& (RE), 1.5 (HG, IE)

NEW FILE report: 1.5 (OS, 00, OE), 7 (00)
NO CODE report: 3 (item 9)

Page 61&

Object code, recording of: 1.~ (WO), 1.5 (00), q.5 (TP), 7 (00, TP)
·crtsets index register: 1.1 (CP, item 7) liibel: 1.1 (ED), Appendix 5

symbol: 1.1 (CP, item 6)
Opcode field: 1.1 (CP, item 1), Appendix 3
Operand field: 1.1 (CP, item 1), Appendix 3
ORO: 1.1 (CP, item 5), 1.3 (LC)
OUT OF HEH report: 1.11 (RE), 1.5 (Ki), 1.6 (AH), 3 (item 3),

Part III (intro)
Out or range errora: 1.1 (CP, item 16), 1.3 (LC, LI)

Par•etera, changeable: Appendix 6
PERIOD key: 1.1 (ED), 1.3 (intro), Appendix 5
Prompt.a, oomand: . 1 (intro), Ja (intro), 7 (intro)

Relative Jwap, target ot: 1.1 (CP, it• 13)
Relocation ot atand-alone HicroHind: 6 (itm 1)
Restrict1ona adapting to EDTASH: Appendix 8

DEFM: 1.1 (CP, 1t•s 3, 11)
DUS: 1.1 (CP, it• 10)
EQU: 1.1 (CP, it• 12)
module aize: 3 (item 3)
relative Jump: 1.1 (CP, item 13)
•Y• bol: 1.1 (CP, it• 6), 3 (items 11, 12, 13)

Singl e-atepping: II. 1 (SP, BD)
Source code rc:r• at: 3 (item 1.8) a1ze restrictions: 3 (item 3)
Stack uae: 6 (item 12)
Symbols dead: 3 (item~)

reat·r1ct.1ons on: 1.1 (CP, it• 6), 3 (items 11, 12, 13)
undefined: 1.3 (LC), 7 (LD)

Tab (RIGHT ARROW): 1.1 (CP, items 1, 9) 1 1.1 (ED), Appendix 3, Appendix JI
Top or aemory: 3 (it.ea 19), Appendix 6
Transter or control: 1.6 (EX, HD), 3 (item 19), •.1 (JP), •·• (IA),

7 (JP)

Undocu.111ented 1natruct1ons: 3 (item 17), 6 (item 13), Appendix 1
UP ARROW key: 1.1 (ED), 1.3 (intro), •• 2 (HM, AS, P1), •• 3 (DS),

Appendix-• Appendix 5

Verification or object. tape: • .s (VF), 7 (VF) of source tape: 1.1& (VS)

X mOde: 1.1 (CP), 1.1 (ED), Appendix -

Page 65

	Cover
	Table of Contents
	Directory of the Diskette
	Introduction
	Part 1 - The Assembler
	Section 1 - Assembler Commands
	Section 2 - Assembler in Action
	Section 3 - Inside Instant Assembler

	Part 2 - The Debugger
	Section 4 - MicroMind Commands
	Section 5 - MicroMind in Action
	Section 6 - Inside MicroMind

	Part 3 - The Linking Loaders
	Section 7 - Linking Loader Commands
	Section 8 - Linking Loader in Action

	Appendices
	1 - Legal Instructions
	2 - Assembler Command Summary
	3 - Source Code Entry
	4 - Editing Procedures
	5 - Entering Line Numbers and Addresses
	6 - Parameter Locations and Meanings
	7 - Summary of MicroMind and Linking Loader Commands
	8 - Adapting to EDTASM

	Index

